

 mBot and Me
(or to be more accurate, mBot and us)

by Lindsay Rooms MBE

An informative guide for both the young and the not so young !

An explanation of everything mBot; including how to use the mBlock 5 programming
interface, full details of useful add-on components and the best ways to modify your
new robot.

 Contains a comprehensive and in-depth guide to

designing and scripting programmes using mBlock 5.

 Windows 10 / mBlock v. 5.1.0 - 2020 Edition

M

mBot and Me
(or to be more accurate, mBot and us)

by Lindsay Rooms MBE

An in-depth guide
for both the young

and the not so young !

A comprehensive and sequential explanation of everything mBot;
including how to use the mBlock 5 programming interface, full
details of useful add-on components and the best ways to modify
and programme your new robot.

Windows 10 / mBlock 5

2020 Edition

For Emma

What will she become…

… a Scientist ?

… a Gymnast ?

… an Engineer ?

… a Dancer ?

… an Astronaut ?

Que Sera, Sera - ‘Whatever Will Be, Will Be’.

Whatever she does, I will be a proud Grandad (and it’s been a privilege).

"Don't let your past dictate who you are; but let it be part of who you will become".

also dedicated to

John Coll

Pioneer P.C. Specialist

& I.T. Philanthropist

‘A valued colleague from the 1970’s who encouraged me to programme computers’

John Coll was asked by the BBC to help draw up the functional description for a computer which
could be used as part of a television series to teach computer literacy. - Quote: "It was John’s drive,
determination and sheer brilliance that really pulled the whole thing off".

Contents

Chapter 1 An Introduction (… or how it all began …) ... 1

Chapter 2 About Makeblock, Scratch and Arduino ... 4

Chapter 3 About mBot the Robotics Device ... 8

Chapter 4 About mBlock 5 ... 11

Chapter 5 About the mBlock 5 User Interface ... 15

Chapter 6 Setting up and Connecting mBot ... 22

Chapter 7 About mBot’s Remote Control Modes .. 28

Chapter 8 All About Batteries ... 33

Chapter 9 mBlock 5 / Scratch - the Basics .. 35

Chapter 10 About mBlock 5 in more Detail ... 44

Chapter 11 Programming with mBlock 5 .. 52

Chapter 12 mBlock 5 - Graphics Programming ... 70

Chapter 13 Discovering Broadcast Messages .. 76

Chapter 14 Creating Graphics Libraries for mBlock 5 .. 80

Chapter 15 Building a Control Interface for mBot ... 98

Chapter 16 Creating ‘Smart Systems’ in mBlock 5 ... 137

Chapter 17 About Good Habits and Best Practice ... 151

Chapter 18 Quo Vadis?.. 157

Chapter 19 An mBot ‘Radar’ Simulation Project .. 160

Chapter 20 An mBot Drawing Machine Project... 171

Appendices

Appendix 1 mBot ‘add-on’ Component - LED Panel 184

Appendix 2 mBot ‘add-on’ Component - Servo Pack....................................... 192

Appendix 3 mBot Servo Project - Robot - ‘Dancing Cat’ 199

Appendix 4 mBot Servo Project - Robot - ‘Head-Shaking Cat’ 205

Appendix 5 mBot Servo Project - Robot - ‘Light-Emitting Cat’ 215

Appendix 6 mBot ‘add-on’ Component - Six Legged Robot Pack 219

Appendix 7 mBot ‘Walker’ Project - Robot ‘Beetle’ .. 221

Appendix 8 mBot ‘Walker’ Project - Robot ‘Mantis’ .. 226

Appendix 9 mBot ‘Walker’ Project - Robot ‘Crazy Frog’ 229

Appendix 10 mBot ‘add-on’ Component - Light & Sound Pack 231

Appendix 11 mBot & Mblock 5 - All you need to know about LEDs 233

Appendix 12 mBot Light & Sound Project - Robot ‘Light-Chasing’ 239

Appendix 13 mBot Light & Sound Project - ‘Intelligent Desk Light’ 243

Appendix 14 mBot Light & Sound Project - Robot ‘Scorpion’ 253

Appendix 15 mBot components - the latest bits .. 256

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 1

Chapter 1 - An Introduction (… or how it all began…)

Well it all began on Christmas morning,

December 2017…

… After breakfast was over, my granddaughter

Emma (aged 7 1/4) began to demolish the huge

pile of presents under Grandma & Grandad’s

Christmas Tree - eventually we could see the

floor and one neat & medium-sized (almost

200mm square & 100mm deep) box-like

present remained. It was for me! It felt fairly

solid and fairly heavy and when I unwrapped

it, the box said ‘Makeblock - construct your

dreams’ and ‘mBot’. It also said that was an

‘Educational’ robot construction kit.

It also said on the front of the little booklet inside the top of the box that it was ‘mBot - One Robot per

Child’ for beginners to learn STEM (Science, Technology, Engineering & Mathematics) - so was this

really a present for me? Emma’s mum (my daughter) explained quickly that this was for me to show

Emma how to build & modify the robot and how to programme it” … it works on Scratch you know”

and “… its Arduino you know!”. “… Arduino - is that a fundamental particle of nuclear physics?” - I

was now out of my depth, I hadn’t a clue.

Had she thought to herself - Emma’s mum, that is - “That’ll keep the old fossil’s

(or something ruder perhaps?) brain working…”?

Keeping the old-boy's brain overloaded more like! Well, it is my seventieth birthday this year.

I had heard of Scratch and knew that it was a graphical programming interface for kids using coloured

blocks that fit together like a sequential jigsaw, but I had never used it and had considered it to be a bit

too simple. I wondered how much mBot had cost them? Ball-park figure in the UK about £85 I guess.

So, with the festivities in full swing & lunch imminent, I had to put the box to one side. Eventually, in a

lull in late afternoon, Emma and I ‘unboxed’ it (that’s a fashionable consumer word isn’t it). The

processor board and the chassis were in full view at the top of the box in a very neat cardboard tray. We

lifted it out and examined the contents - it was all beautifully made. In the bottom of the box was

another cardboard divided tray with all the other bits. Little brown plastic bags that contained

mysterious circuit boards which we left untouched, bags of screws & nuts, cables & the wheels. Emma

found the Screwdriver (she’s so practical) and had whipped-off the wrapping before I could blink and

was exclaiming about it being double ended “… it’s like an Allan key shape” she said meaning the

hexagonal cross-section. She studied all the bits that were unpacked and tea-time approaching, I

promised her that we (she, I mean) would build it soon - but not today.

Well, the next time we would meet to do that would be just over a week later - her first day back at

school after the Christmas holiday which coincided with the day of the week we normally go to visit.

That gave me time to study all about it - ‘that’ll be a breeze’ I thought!

mBot and Me
a Beginner’s Guide

Page 2 - mBot and Me - a Beginner’s Guide

On the day after Boxing Day I started my researches on the great world-wide inter-web and immediately

saw that there was a lot more to this mBot and Scratch programming than I thought. I found several

rather informative videos on YouTube and marked one of them showing the build-sequence with a

bookmark to show Emma before we (she) started our own construction. I found out a lot about

Makeblock who manufacture & market mBot too and I had a go at tentatively trying to slot some

programming blocks together on the mBlock programming interface which I had to download from

Makeblock. I also downloaded it to my Surface tablet PC so that I could communicate with mBot via

Bluetooth.

My observations and all the projects in this book are based on me using Windows 10 PCs - but they

should mostly (I hope) apply to the other operating systems on which mBlock works.

Why a book? Well I didn’t set out to write one but …

… I spent a lot of time finding out on-line everything I could about MakeBlock, Scratch and mBot -

there was so much out there - too much to comprehend and in drips and drabs in many diverse places

with nothing explained in complete and understandable sequences of what to do first, second etc. - so I

started making comprehensive notes to get my head around it all.

A book on mBlock was what was I needed - so I looked; and there was plenty to be found

on Scratch but almost nothing specific to mBlock or mBot written in English. There seemed

to be paperbacks in German and Dutch and several non-English hardback versions together

with a newly published (USA, Dec. 2017) ‘Kindle’ format book. But nothing that seemed to

explain ‘everything Makeblock’.

What I wanted (and seemed to be writing) was a fully-explained, complete and sequential

understanding of everything about mBot (and how programming in mBlock works). The

title ‘mBot & Me’ probably should have been ‘mBot, Emma and Me’ but since I seemed to

be doing all the work and ‘Me’ is the prefix for Makeblock’s Me series modules (it’s an

abbreviation of ‘Makeblock electronics’); this play on the word ‘Me’ seemed to fit the bill.

A busy week passed in which I decided to visit PC world and buy one of those little dongle gizmos that

you plug in to a USB port to communicate by Bluetooth - this was for my desktop PC which hadn’t (as

most don’t) an integral Bluetooth

connection as standard. A little poorer by

£13, I got home to test it by linking my

mobile phone to the desktop via Bluetooth.

A week later we collected Emma from

school, and I showed her the little video on

my Surface tablet. She seemed very

enthusiastic, so we set about undoing all

the bags from the box and laying out all

the bits on her dining table. Between us,

we followed the instruction diagrams in

the little book and Emma inserted screws

in to all the right places.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 3

She had already built Lego models on her own (by following pictorial guides) and setting to work on

mBot’s out-of-the-box construction, she used her lovely new screw-driver very competently.

I tried to get her to understand

about only holding the edges of

the circuit boards, but I totally

failed in that respect - and in

truth, her little fingers were

much nimbler when holding

bits and putting nuts on to

screws in tight places than my

big ‘Santa’ hands.

It took about half-an-hour to

complete the construction, but

by this time (after a long first-

day back at school) she was

flagging; but perked -up when

she flicked the power-switch

and mBot burbled for the first-

time and came to life. I was

relieved that static build-up had

not done any damage to its circuits.

We connected it with the serial cable to my Surface tablet and I showed her what I had learned about

putting robotics blocks together to make a little programme that did indeed communicate with the robot.

Since I had not yet had the chance to buy a battery for the IR remote, we couldn’t test that & by tea-time

she had had enough.

The following week, we had another go. She was lively to start with but was tiring quickly after another

long day. The highlight was the IR remote and the three default modes of mBot operation. She loved

steering it around the house and making mBot chase the cat. She thought that line-following on the little

figure-of-eight track was brilliant too. I thought to myself however that the task I had been set by my

daughter was going to take a long time…

… We are nevertheless making (me in particular) good progress and we have had a few technical hitches

so far, but nothing that someone reasonably competent can’t work around. These are often genuine

robotics issues that robot builders will always encounter at some point. All the problems we have had

have been a learning experience (for me) rather than a distraction. As is often the case with computing,

you learn more when stuff goes wrong, and you must fix it or find another way around it.

There are lots of robot toys out there that claim to be truly programmable when they really mean they

can be controlled from a remote or an app. and mBot is indeed programmable. Many educational

(supposedly programmable) robots are quite restricted in what they can do. Whereas mBot is

fantastically capable by comparison - and cheaper. With mBot you can design custom robot models that

react to sensors, move, play sounds and update lights; and especially if you add the easily available and

not too expensive add-on packs like the LED Matrix Display Plate (see Appendix 1, page 184) you can

develop useful feedback systems.

mBot and Me
a Beginner’s Guide

Page 4 - mBot and Me - a Beginner’s Guide

Chapter 2 - About Makeblock, Scratch and Arduino

About Makeblock

mBot is essentially a children's robot, but it's part of the Makeblock family of beautifully made robotics

kits and components for hobbyists (see the image below). You can progress on to Arduino

programming with mBot. Teenagers (and Granddads, one hopes!) will be able to move onto other

robotics products in the Makeblock range and build projects such as a 3D printer, a robot arm, a drawing

machine or a robot of their own design, although much of this stuff is expensive.

Makeblock is described as a leading Chinese technology and robotics construction company providing a

platform for makers, DIY hobbyists and educators. They raised funds in a ‘Kickstarter’ crowd-funding

campaign about five years ago to establish one of the company’s most popular products - the mBot kit.

They have developed Arduino based hardware, robotics hardware, and Scratch based software,

providing educational tools (using robotics) for learning programming, engineering, and mathematics.

Their robotic kits work with mBlock (a variant of Scratch), a programming language that lets users

easily control their robots’ movements by using programming software which is made up of pre-loaded

colourful and modularized drag-and-drop graphical blocks. Using it, children feel that they can easily

programme mBot without writing difficult code or using textual programming language.

Although the company first started out creating robot parts for the do-it-yourself ‘Maker’ community

Makeblock has since shifted its focus to Science, Technology, Engineering and Mathematics ‘STEM‘

educational robots with the belief that it is essential to encourage creativity and innovation in the

younger generations.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 5

There are two versions of the mBot, a Bluetooth version for home use and a 2.4 GHz Wi-Fi version

designed for classroom use.

Everything that you need to build it is in the neatly packaged box and you need to assemble it using the

precise instructions provided and then add your own batteries. There are 45 pieces and it's easy to put

them together in about 15 minutes. Once you put everything together, mBot can move around and avoid

obstacles on its own, follow a line or just accept commands from the supplied IR remote control.

With the Makeblock app for phones and tablets you can control mBot via Bluetooth. For children

especially, it can be a surreal experience to actually build something out of tiny parts and see it come to

'life'.

mBot is designed to be tinkered with, and the idea behind Makeblock’s mBlock programming interface

is that younger children can start out with graphical programming and move on to text-based

programming as they become more advanced. This is what they hope will inspire the next generation of

engineers. Makeblock Me Series Modules (their plug-and-play electronics circuit board components)

are designed to be simple to connect and easy to programme and each Me module comes with its own

Arduino library for easy programming.

Makeblock aims to help children build robots and learn to write computer programmes in a fun and

educational way as the trend for incorporating coding (the latest educational buzz-word) and robotics

into education becomes desirable. The company believes that their kits will help users develop logical

thinking and gain the mindset and thought-processes of a programmer - although their systems are not

just for aspiring programmers.

About Scratch

Kids from 7 or 8 years old and upwards (inc. their grandparents!) can learn to write simple programmes

for mBot using Makeblock's very intuitively simple to use software mBlock 5 (a variant of Scratch 3)

and using this free mBlock software is simplicity itself and causes no problems with the majority of

computer operating systems.

mBot and Me
a Beginner’s Guide

Page 6 - mBot and Me - a Beginner’s Guide

Scratch is both a programming language and an online community where people can programme and

share interactive media such as stories, games, and animation with others from all over the world.

Scratch is designed and maintained by the Lifelong Kindergarten group at the MIT Media Lab.

Massachusetts Institute of Technology Media Lab came into being in 1980 with the aim to invent and

then reinvent how humans experience and can be aided by technology. Their current Scratch software is

provided free of charge and can be downloaded from:

https://scratch.mit.edu/download

While Scratch is primarily designed for 8 to 16-year olds, it is also used by people of all ages, including

younger children (with some help from their parents, grandparents or teachers). The current version

available to download is Scratch 3.0 and I would recommend downloading it as a learning counterpoint

to mBlock 5. It generally has much better help features and has an excellent ‘Wiki’ (a website on which

users collaboratively modify content and structure). This can be accessed from:

https://scratch.mit.edu/search/projects?q=wiki

As children create with Scratch, they learn to think creatively, work collaboratively, and reason

systematically. They can programme their own interactive stories, games, and animations by moving

small pictures called ‘Sprites’ on top of a backdrop called a ‘Stage’.

Learning Scratch is a good and a VERY easy way to understand many programming concepts, but as an

ICT teacher I personally achieved many of its goals by teaching kids by using instead the universally

used Microsoft Office multi-application environment.

I used to use ‘PowerPoint’ to develop logical sequencing skills (this was such a good introduction to

programming things) followed by using ‘Visual Basic’ (Microsoft’s own powerful Macro programming

language) which has a slightly different variant inside each component of ‘Office’. My favourite

component for this was ‘Excel’ where high-quality user interfaces could be developed.

My granddaughter had already done some simple block programming of interactive stories using

Scratch Junior (designed for kids aged 5-7, using touch-screen tablets) on an iPad at her primary school

and she loved it too! The first time we opened mBlock, I was impressed when she showed me how to

colour in a background for the stage.

Earlier Scratch and mBlock environments were written in Adobe Systems ‘Flash’ and based on open-

source software. Importantly, neither Scratch 3 nor mBlock 5 now no longer require Flash to be

installed to run. mBlock 5 works very well and Makeblock provide a very helpful support service and

an excellent forum where you can interact with other users as well as their own ‘Technical Support

Department’.

It’s worth pointing out that the Scratch community also provides tons of help with general scripting (but

not robotics scripts) problems.

You will find that programming problems can be a learning experience rather than a distraction and, as

is often the case with computing, you learn more when stuff goes wrong, and you must fix it or find

another way to solve a problem.

https://scratch.mit.edu/download
https://scratch.mit.edu/search/projects?q=wiki

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 7

About Arduino

Arduino is an open-source electronics platform based on easy-to-use hardware and software. Arduino

hardware boards are relatively inexpensive compared to other microcontroller platforms and Arduino

software is easy-to-use for beginners, yet flexible enough for advanced users. It runs on Mac, Windows,

and Linux platforms.

Arduino consists of both a physical programmable circuit board (often referred to as a microcontroller)

and a piece of software, or IDE (‘Integrated Development Environment’) that runs on your computer. In

earlier versions of mBlock software, this Arduino programming software was installed automatically on

your PC (as a separate entity) when you download mBlock.

In the latest (totally rewritten) version of mBlock (mBlock 5) there is now an Arduino Editor built-in

with one-click switching between graphical programming Scratch blocks and ‘Arduino’ code. mBlock 5

has a built in editor for programming in ‘Python’ code too.

Arduino came to prominence as a tool to help designers, artists, and musicians access the power of

inexpensive 8-bit microcontrollers by learning 'a little programming' without having to acquire the full

range of skills needed to work with embedded electronics. mBot has an ‘approved’ Arduino derived and

enhanced board (mCore) at its heart. The Makeblock mBot is highly regarded and although it is fairly

expensive in its own right, it is considered to be the most widely available and one of the cheapest robot

kits, with hundreds of thousands distributed around the world.

Arduino based boards (remember, mCore is one of these) don’t have an operating system per se, so

whatever is loaded into the board’s flash memory is what will be run at power-on. It is therefore

possible to compile code and substitute your own programme for mBot’s default code by ‘uploading’ it

into mBot.

To enable mBot to interactively communicate with the mBlock 5 software, you need (as updates become

available) to upload to its mCore board the latest upgrade of special ‘firmware’ which interacts with

mBlock at low level allowing you to access the Arduino board features interactively from the graphical

programming environment. If mBot’s flash memory is overwritten by your own customized code, and

you want to clear this code, then you will need to do a firmware upgrade, and also upgrade mBlock 5’s

software with the latest available version - see Chapter 9 (page 37) for more on this.

mBot and Me
a Beginner’s Guide

Page 8 - mBot and Me - a Beginner’s Guide

Chapter 3 - About mBot the Robotics Device

Currently available is the upgraded v1.1 mBot. You can buy mBot robots and related add-on packs

online and the cheapest options are through Amazon or via Ebay. Compatible specialist components are

available too, although many of these are not easily obtainable in the UK.

mBot is very appealing to children

and many will get huge satisfaction

from its ultrasonic sensor ‘eyes’ and

smiley face and they take to this

friendly look straight away.

There are some things that you need

to understand to get the best from

mBot but Makeblock have done a

fantastic job with the packaging,

instructions and the whole ‘out-of-

box’ experience.

The only tool required to build it

(Emma’s favourite reversible

screwdriver) is included, and the instructions are easy to follow. A typical 7 or 8-year-old can make an

mBot without much help and it comes in a heavyweight cardboard box which can be kept for storage of

the robot and its cables.

Kids get a sense of achievement from building the robot, and it goes together quickly so they won't get

impatient. The mBot chassis is made from anodised aluminium - it's beautiful and feels solid and of

very high quality.

The sensors and motors connect

easily to the board, with no fiddly

clips, jumper leads or breadboard to

worry about. The board has high-

quality RJ25 sockets which receive

push-in connectors. These ports are

clearly labelled, and colour coded

which is important when it comes to

programming them later.

N.B. Do hold all circuit boards by

the edges when fitting them in place;

and after you have opened them do

not throw away the little coloured

polyethylene bags which contained

your electronics circuit boards - you

should use them again if you need to

store any modules not required in

any robot modification project.

http://www.techagekids.com/2016/05/mbot-original-vs-mbot-v11-new.html

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 9

mBlock 5 is essentially a visual software development system; but at the outset, only when the mBlock 5

software on your PC and the mCore board on mBot are connected to each other by either cable,

Bluetooth or wireless can you control your robot.

Changing the colours of the onboard mCore LEDs using mBlock 5 is a simple and fun activity to get

started. mBot has a small buzzer capable of playing musical notes too. Since I learned to programme

Clive Sinclair’s ‘Spectrum’ in the early 1980’s, programming pitch changes for mBots piezo buzzer

gave me a sense of déjà vu (and probably will too for everyone old enough to remember it!). The

ultrasonic (proximity / distance) sensor can be used for detecting things that come too close. For a

novice programmer it’s fairly exciting; and experimenting with feedback from it is fairly easy.

Buying add-on components, as soon as you feel able too is a good idea and I would recommend the LED

matrix digital display as your first add-on since it opens-up many opportunities for simple but very

effective programming by drawing images to display or setting a scrolling message or count-down

timers. See Appendix 1 (page 184) for more on this. Emma particularly enjoyed using the ‘immediate

feedback’ potential of LED panel graphics.

It is reasonably easy to get many of things such as the LED panel working with a bit of help from items

posted on the very, very useful MakeBlock forum which can be found at:

http://forum.makeblock.com/c/makeblock-products/mbot.

mBot comes with default (Factory Setting) firmware which responds to a small infrared remote-control

handset which is included in the box. This means that once you have sorted out power, connections and

firmware updates you can immediately play with mBot as a remote-controlled toy. It took about four

weeks before we spotted that the IR remote had a removable protective film around the buttons!

The infrared remote is immediately usable from the box to control mBot, but it is also programmable via

mBlock 5 which is fantastic since you can create your own key-press instructions.

This means you can control the robot with your own commands via the remote control even when it's

not physically connected to a computer. This was a very popular initial programming activity for us,

and Emma loved being able (eventually) to write very simple scripts for the IR remote to make mBot do

what she wanted.

You should be aware that the IR remote control will control any mBots in range - this can be fun for

coordinating several mBots, but not such fun when two kids want to play with their own mBot in the

same room. See Chapter 7 (page 28) for more details on the IR remote.

Electric motors like those that power mBot are often mismatched, very slightly, (which is a common

problem in robotics). This can make the IR control steering experience less than perfect;, and you can

with a little experimentation set one to run marginally slower than the other to achieve a straight track

e.g.:

It is also possible to run the drive motors individually in mBlock 5 using the following extension block:

http://forum.makeblock.com/c/makeblock-products/mbot

mBot and Me
a Beginner’s Guide

Page 10 - mBot and Me - a Beginner’s Guide

Beware though, full re-programming of the button controls is rather more complex and only works when

your scripts are uploaded to the flash memory of mCore, the Arduino board which is mBot’s brain.

Despite what I said when mentioning add-on packs earlier, there's much that you can do with the basic

mBot so there's not really any need to buy anything extra to start with. There's plenty of

experimentation to be had with your own scripts to keep you busy, but it's good to know that you can

extend the robot for not much extra outlay when you need something new to try. Being part of the

MakeBlock family, it means that there are quite a lot of extra components that can be used to upgrade

mBot, enabling you to build new projects. The basic add-on kits are easily resourced in the UK but

many other (desirable but expensive) components are not.

Programming mBot will probably inspire you to learn more, enabling you to link robotics with complex

programming of sprite output on the stage too.

Many other toys and kits that are available may be brilliant for a few hours or perhaps a few weeks and

then kids have done everything there is to do with them, but mBot is not really like that at all. Many

young users have been completely inspired to design their own robots and then are inspired enough to be

constantly planning and working on their own fantastic ideas

The box that mBot comes in can be opened without destroying it and it is sturdy enough to use to store

your assembled mBot.

If you remove the inner packaging then your completed mBot robot fits nicely in the box with space for

the IR remote, the cables, spares, tools etc. It might sound trivial, but it's a nicely thought-out and well-

designed touch from Makeblock. Parents be thankful - it’s always hard to keep track of cables, spares

and add-ons for techie toys - but not in this case!

I started this way too, but as you’ll see a little later (in Chapter 17, page 156) that I eventually needed to,

and did, succumb to bigger and then even bigger storage options.

Basically, and with a few provisos, mBot a is indeed a very impressive piece of kit.

All of Makeblock’s products (not just mBot) are of the highest quality and are so well finished and

packaged! mBot is a perfectly affordable robot for techie families where an adult can give a bit of help

to get children started. mBot is also perfect for schools or robotics clubs with specialist teachers.

Emma whizzed through the basic learning package on her tablet. For any child, writing simple scripts to

programme colour-changing lights is fantastic, as is programming mBot to move around with their own

commands. Then they've got the light sensor, the ultrasonic sensor and the line-follower to explore; let

alone the ability to play (sometimes annoyingly repetitive) musical notes through the on-board buzzer.

Plus, the excitement of programming the infra-red remote themselves.

And that's before you even consider the such good value add-ons such as the aforementioned 8 x 16

LED matrix display panel pack and the Servo add-on pack which can extend what you can do with mBot

in so many more ways …

… keep reading - there’s lots to learn and lots to do!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 11

Chapter 4 - About mBlock 5

mBlock 5.0.1 was released by Makeblock in January 2019 at the same time as the latest iteration of

MIT Media Lab’s parent application Scratch 3. I did not install any of the Alpha or Beta pre-release

versions, preferring to continue my programming journey by using mBlock 3 until the full-blown

version of mBlock 5 was made available and stable; and despite using mBlock 3 in quite some depth for

much of 2018, I have had to work much harder than I expected to understand exactly how this newly

released version works and how it should be used; and nothing I have read about the application so far

has fully explained the concepts of its usage from a beginner users’ point of view.

After about ten weeks of experimenting with mBlock (v.5.0.1) in the early part of the year, what was

apparent was that there was little clear, detailed and succinct guidance to this major application update.

In the second part of the year after another version update, nothing has changed. You have to search the

internet and indeed Makeblock’s own support pages very hard to find anything of value to familiarise

yourself with mBlock 5. Even the helpful 'User Guide', accessed from the ‘Tutorials’ icon on the right

of the mBlock 5 title bar (in the form of an HTML file provided by 'GitHub'), does not give you a fully

descriptive or clear overview of the nuances of how mBlock 5 should be used. Despite some limitations

it is nevertheless such a useful reference that I bookmarked this page in my web browser to be able to

access it directly without having to open mBlock 5 first.

N.B. You can find the ‘GitBook Quick Start Guide and FAQs’ using the following internet link:

http://www.mblock.cc/doc/en/

I do like what I have seen of mBlock 5 so far and despite some minor, but I hope constructive,

criticisms noted in this book I am looking forward to using future improved releases. I am looking

forward too, to the release of more mobile devices variants of the software; since the majority of

Android (Intel x86 chip) systems (including my very new Galaxy Note 9 phone) are not yet supported!

mBlock 5 has been specifically designed by Makeblock to support their robotics products and is based

on Scratch 3 and Arduino code. Supported robots are ‘mBot’, ‘mBot Ranger’ and ‘Codey Rocket’

together with their ‘HaloCode’ board and their ‘Neuron’ app. There is also support for the programming

of several Arduino boards including the versatile ‘Uno’ board and the BBC micro-bit (micro:bit) too.

mBlock 5 is available for desktop Windows PCs and mac OS platforms and there is also an mBlock 5

Mobile App which currently runs on Apple iOS 9.0 (and above) devices together with Android 5 and

above devices (but currently, Arm-based chips only). Makeblock say that the Mobile App integrates

concepts of programming into different and increasingly difficult game levels to keep interest in coding

going by unlocking new programming skills step-by-step.

Some of the graphical improvements featured in mBlock 5 (and the equally new Scratch 3) are a great

improvement; especially the one which shows a ‘shadow’ indicating that blocks are within range to

connect to each other when connecting and disconnecting them. The shadow feature is again used rather

nicely when blocks are dragged back over the categories pane to delete them; and greatly improved too,

is the ‘illumination’ of the user-defined content windows within blocks which indicate that ‘nesting’

another block inside that window is imminent.

mBot and Me
a Beginner’s Guide

Page 12 - mBot and Me - a Beginner’s Guide

There has been much hype about the virtues of mBlock 5 as a programming tool which is versatile and

user-friendly enough to offer users whatever the latest iterations of the parent Scratch application can

give. Scratch 3 (developed by MIT) is the latest evolution of Scratch which is one of the most popular

computer programming languages for children in the world. It is available in more than 40 languages

and users can create, share and mix projects on many different hardware platforms. For help with

programming using mBlock 5 there are several (mostly created in mBlock 3) ‘how-to’ videos available

on ‘YouTube’, and the on-line mBlock community allows users to share projects and learn from like-

minded creative individuals.

Makeblock says that mBlock 5 provides both graphical (block-based) and textual programming

languages within the software and their aim is to deliver the best in STEM / STEAM education in coding

and robotics. Although mBlock 5 is fundamentally for robotics programming, with this software users

can drag programming blocks about in the same way as in its parent application (Scratch) to design and

create stories, games and animations and all without needing any additionally connected hardware. The

raison d'être of mBlock 5 is to enable users to programme hardware devices; the Makeblock family of

robots, the BBC micro-bit (micro:bit) and the very popular Arduino Uno board using either drag ‘n drop

block programming or (with increasing skill levels) textual programming languages.

Whilst the novice programmer can experiment fairly comfortably using drag n’ drop blocks, they

certainly can’t try to write Arduino code in the editor and Python whilst being easier and clearer to

understand than Arduino is not that simple and mBlock 5, critically, gives no actual guidance on how to

use either of these editors (although the ‘GitBook Quick Start Guide’ does have a good basic

introduction to Python).

The transition for any adventurous user into studying or using ‘real’ programming code is now fairly

seamless; and it is possible to see either ‘Python’ code as a comparison to any ‘Sprites’ tab scripts

created or ‘Arduino C’ code as a comparison of ‘Devices’ tab scripts. In either, the code can be copied

to the clipboard and pasted into the respective editor for experimentation.

N.B. Python is an interpreted, high-level, general-purpose language designed to be easily readable,

notably using significant whitespace to make its formatting visually uncluttered. The traditional use of

semicolons after statements is optional and it frequently uses English keywords where other languages

use punctuation. Some Python expressions are similar to those in languages such as C and Java, but it

does not use curly brackets to delimit blocks of code.

The new paint and sound editors offered in both Scratch 3 and mBlock 5 make it easier to manipulate

characters, music, and sounds. It is now possible in both applications to detect and interact with motion

and sound with the video-sensing features of a web-cam; whilst the sound editor has been redesigned so

that it is even easier to record sounds and many new sound effects manipulation filters (‘faster’,

‘slower’, ‘echo’ etc.) have been added.

mBlock 5 comes with a cloud storage service too which is specially designed for A.I. (Artificial

Intelligence) and IoT (The Internet of Things). Makeblock state that these features allow users to

master the fundamentals of some of the latest cutting-edge technologies. It also integrates Google’s

deep learning library of open educational resources for problem-solving using A.I. and ‘Cognitive

Services’ - an evolving portfolio of machine learning algorithms for building intelligent applications by

adding features such as understanding spoken and written language together with facial, speech and

human emotions recognition.

https://en.wikipedia.org/wiki/Steam_(disambiguation)

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 13

Once you come to realise that mBlock 5 has in reality two different Scratch programming sections to use

(with mostly different blocks in each of them) it is easy to see where you are going to create ‘Device’

scripts that control mBot and ‘Sprite’ programming scripts that can be used to animate realistic graphics.

Understanding how ‘Broadcast’ messages can be used to transfer data-on-demand between the two to

enable you to display sensor feedback from mBot visually on mBlock’s ‘Stage’ or clicking meaningful

sprites to send control commands back to mBot is vital. By using your own graphics to create high-

quality interfaces, feedback data from mBot can be represented in a variety of real-time digital, analogue

or alphanumeric output formats; and representations of switches etc. can provide real-time controls for

mBot too! (See page 75 and Chapter 13 for more on this).

mBlock 5 v 5.1.0 (released in early July 2019) - Modifications and Features

The user interface (the ‘Edit’ page) is an improvement on the January (v.5.0.1 release). The ‘Scripts’

area is larger and there are now just two choices to adjust the script area size (& therefore the stage size

& sprites list size too).

Both the ‘Edit’ page and the full-screen ‘Presentation-Mode’ display seem to be sharper brighter &

clearer. Sadly perhaps, the ‘Presentation-Mode’ surround screen is no longer dimmed down (to nearly

black) as it was in mBlock 3 and it is now only slightly dimmed; which does have the advantage of

seeing a looping script ‘pulse’ etc. - but that is not really a lot of use and for the most part is actually

intrusive since it detracts from the contents on the presentation screen itself. If the surroundings were

totally black then this would be so MUCH better.

Projects still do not remember which of the three variable monitor windows types were last active when

they are reloaded in any new software session. They do remember that they were set to show on the

stage and where they were positioned, but they always revert back to the default ‘labelled’ monitor type.

A great improvement though is the much needed addition of an ‘Export’ sprites facility enabling

reuse of the sprite, its block coding and any costumes attached to that sprite in other projects.

Attached (or floating) comments remain attached to exported sprites too.

Right-click on a sprite (or the device in the ‘Devices’ tab) and ‘Export’ becomes an available choice.

This saves a single sprite as a .sprite3 file. These can be added into another project by using the

‘Upload’ button in the sprites library. A sprite containing block scripts uploaded this way is NOT

however added into your ‘My Sprites’ library. A ‘Devices’ tab device icon can also be exported, and if

uploaded then the resultant .sprite3 file will open as a new device in the ‘Devices’ tab of a project

remembering both device type and any attachments - this seems to be a very quick way to start a new

project with some useful device stuff already in place!

It is now possible too to export a .png image of all of the coding blocks written for any sprite by right-

clicking on the ‘Scripts’ area for that sprite (or device) and choosing ‘export all scripts to image’.

A sad loss from the ‘Menu’ bar is the button giving instant access to ‘My Projects’. To choose a project

you now (rather more slowly) have to select ‘Open’ from the ‘File’ menu to access the ‘My Projects’

screen - it is slower, but it’s OK though (when you get used to it!).

mBot and Me
a Beginner’s Guide

Page 14 - mBot and Me - a Beginner’s Guide

Usefully, ‘Regularly Used Devices’ can be set to appear each time you open a

‘New’ project.

To make mBot your default start-up device, open the ‘Device Library’. In the

top left corner of all device icons in the ‘Device Library’ list is a hollow star.

Click the hollow star inside the mBot icon and it will turn solid blue.

There is now a supposedly better compatibility between mBlock 5 and Scratch

3 to seamlessly import projects to-and-fro from each other (enabled by just

swapping the file extension from .mblock to .sb3) but this principle seemed to work well before, so no

change detected here!

Existing extensions have had several updates over the last year and several new extension packs have

been added too, namely: Data Chart, Google Sheet, Translation, Speech, Motion Sensing, User Cloud

Broadcast and Upload Mode Broadcast.

However, most of the extension packs (both those for ‘Devices’ and those for ‘Sprites’) seem to be of

rather limited use! Makeblock have now unlocked the ‘Extension Center’ too to enable users to create

their own extension block sets. I have yet to try this.

In the parent application (MIT Scratch) you are restricted to and constrained by the ‘graphical jigsaw’

(block-based) options provided and there has in the past been some criticism of Scratch as an

introductory programming language due to its drag-and-drop visual style; suggesting that it gives

children (its target audience) the wrong idea of programming and it being watered-down compared to

other programming languages such as C++, C, Java or JavaScript.

The new mBlock 5 variant of Scratch 3 now addresses this supposed lack of showing ‘real’

programming language syntax in its parent application by allowing users to easily switch to either the

‘Arduino’ editor (for ‘Devices’) or the ‘Python’ editor (for ‘Sprites’) with just one mouse-click - see

Chapter 5 (page 19) for more on this.

mBlock’s much vaunted concept is to enable users to grasp how to programme with blocks first, and

then “effortlessly move on” to seeing how their programme looks using text based coding. mBlock

promotional material makes much of this one-click switching to ‘Python’ but rather disappointingly,

there seems to be no mention that ‘Arduino C’ is the language required to programme connected robotics

devices.

Whilst the novice programmer can experiment fairly comfortably using drag n’ drop blocks, they

certainly can’t try to write Arduino code in the editor and Python whilst being easier and clearer to

understand than Arduino is not that simple.

mBlock 5, critically, gives no actual guidance on how to use either of these editors (although the

‘GitBook Quick Start Guide’ does have a good basic introduction to coding using Python to programme

sprites).

Makeblock tell me that their company support focus is on their own official software (mBlock 5)

and they say that they are not prepared to give much guidance to programming in Python or

Arduino, suggesting that users should learn to use these languages by themselves.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 15

Chapter 5 - About the mBlock 5 User Interface

The mBlock 5 interface looks good, and it should do, because it is very much like its parent application,

the newly introduced Scratch 3; but with one notable exception - the presentation / output window, the

‘Stage’ is still positioned on the left of the screen (exactly it was in the its own predecessor, mBlock 3).

The new Scratch 3 application has the stage positioned on the right of the interface; but I guess that the

stage remaining on the left in mBlock 5 has the advantages of the interface still allowing any compiled

programming language code to be shown in a pull-out window from the right of the screen; just as it

always did.

It noticeably takes about four times longer to start-up mBlock 5 than its forerunner, mBlock 3. On my

current computer, mBlock 5 loads in about 12 secs as opposed to 3 secs for mBlock 3. On the plus side

though, everything inside the new software works much quicker and more seamlessly than it did before;

and it is indeed a great improvement on its predecessors!

The user interface (the ‘Edit Page’) now has brighter colours and they are indeed sharper brighter &

clearer than they were before. Just compare the title / menu bar screenshots below.

The top image of the two screenshots below is of July’s release of v5.1.0 whilst the January release (v

5.0.1) is shown below that. It is obvious from this comparison that the latest version of mBlock 5 is

indeed much more vibrant and professional looking, with a colour scheme which echoes the Windows

operating system’s default colours.

The remainder of the interface is remarkably similar to its updated Scratch 3.0 parent. The newly

designed ‘Blocks Area’ panel of colour-coded category buttons is positioned to the right of the stage and

towards the centre (depending on the size of your screen) of the edit page. Next to that is a sub-panel

area showing the list of currently selected blocks and on the right of the screen and dynamically

expanding to fill the remaining part of the interface is the ‘Scripts’ (block programming) area.

On the extreme left of the title bar in the January release (v 5.0.1) there was a ‘Main Menu’ icon and

clicking this gave you the options of creating a new project, opening a project from the computer,

accessing help and exiting the application, etc. However, in the bright and shiny July release (v 5.1.0)

this has been removed and these important menu items are now grouped under the ‘File’ menu heading

(the third icon across the title bar. In my eyes this is a retrograde step and the ‘Open’ option takes just a

little longer to get to the thumbnail based ‘My Projects’ management page. You create a new blank

project page by just clicking the (+) icon here. Sadly, the icon taking you straight to the same

management page of your ’My Projects’ files (stored in the Cloud) is no longer part of the new title bar -

another retrograde step!

mBot and Me
a Beginner’s Guide

Page 16 - mBot and Me - a Beginner’s Guide

To the left of the ‘File’ icon is the ‘World’ icon and here you can switch to one of thirteen languages for

the interface if you need to (a good way to learn some technical French perhaps?). Although mBlock 5

sensibly identifies your computer system’s default language when it installs itself.

The new ‘Edit’ icon to the right of the ‘File’ icon is rather limited - it just seems to turn ‘Turbo-Mode’,

used to speed-up (fast forward) running scripts for stage presentations either on or off. Next in the title

bar at the top of the interface is the default label ‘Untitled’, this is the ‘Title’ icon. Click on this to

change (rename) the title of your current project.

Immediately to the right of the title icon is the ‘Save’ (‘Floppy Disk’) icon. Click here to save a file

directly to your ‘My Projects’ cloud storage area. This is useful for fast saving when working on a

project. There are no other save options here so you have to return to the ‘File’ menu to find the option

‘Save to your computer’ - using this is important because it enables you can store your files into a

purposely structured and hierarchical folder system of your own. Making sequential backup copies of

your files to both ’My Projects’ in the mBlock cloud AND to your computer is not a bad idea either.

I would advise against clicking the rather prominent ‘Publish’ icon in the centre of the title bar (for now

anyway until you make a specific decision to share your work with others). As soon as you click the

icon it will save the project that you currently have open on your screen to the cloud and then open a

dialogue (note the screenshot of this below) enabling you to make your work available to the mBlock

community.

Fortunately, your work is only published and made available to everyone in the community if you click

the ‘Share’ button at the bottom of the dialogue. If you do this then be aware that other community

users will now be able to use the file or ‘remix’ it as a version of their own. Towards the right of the

title bar is the ‘Tutorials’ icon and this is now where the ‘Example Programs’ management page can be

found.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 17

The examples page enables you to access a variety of samples for ‘Device’ and ‘Stage’ programming.

There have been some improvements to the stuff available, but the example robotics programmes

currently available seem to be just for the 'Codey Rocket' robot and the ‘HaloCode’ single-board

computer. Makeblock really should provide sample programmes for mBot users here too.

Use the ‘Feedback’ icon on the right-hand end of the title bar if you think that you have something

important to impart to Makeblock. Response is fast and I think that it is one of Makeblock’s great

strengths that they have a courteous and knowledgeable team in support of their hardware and software -

but you have to be very clear, precise and succinct in what you are trying to tell them. The icon to

the right of the ‘Feedback’ icon on the title bar allows you to check for updates.

The ‘Sign-In’ icon at the right-hand end of the title bar looks like it ought to contain your picture.

mBlock 5 keeps you ‘Signed-In’ to the mBlock cloud (even if you close down the application itself)

until you ‘Sign-Out’ again. It is now possible to modify some of your account details in your profile and

to change your nickname etc. (but not your picture). This icon also gives you access to the mBlock

cloud storage service which is a very fast & efficient way of saving / reloading project files; but if you

open your project files here it then opens them in mLink (the web browser version of mBlock 5). This is

rather confusing when you already have the software open and are already using it The screen-shot

image below shows how the mBlock 5 ‘Edit Page’ looks at initial start-up.

The ‘Edit Page’ is the descriptor for the main mBlock 5 interface and it occupies the whole of the screen

below the title bar. It is comprises three dynamic panels containing six parts or sub-sections.

mBot and Me
a Beginner’s Guide

Page 18 - mBot and Me - a Beginner’s Guide

In the top-left corner is the ‘Stage’. This is the core-component display area of the traditional Scratch

application and it can be used to display useful visual feedback from ‘reporter’ blocks and the values of

‘Variables’ and ‘Sensors’. There are three buttons immediately below the stage, the first is the

‘Presentation Mode’ (full-screen display) icon and then two buttons to adjust the size of the stage. The

first of these is the default setting and the second reduces the stage size by about 50% from the default

size (and consequently also shrinks the panels below it). The main purpose of shrinking the size of the

stage is to increase the working area of the ‘Scripts’ panel which will now fill most of the right-hand

side of the screen.

Also below the below the stage display, are the two buttons to start and stop scripts - the ‘Green Flag’

button and the red ‘Stop’ button.

Next, to the ‘Stage’ area panel and towards the centre of the interface is the ‘Blocks’ area. Here you can

choose from several categories of programming blocks. If you click on any of the colour coded category

buttons (see the screenshot on the previous page) then the sub-section to the right changes to show the

available programming blocks for that category - this panel defaults to the ‘Show’ category of blocks.

On the right of the edit page, and initially totally blank, is the biggest panel area (its size dependent upon

the size & resolution of your screen display) - this is the ‘Scripts’ area where you create your mBlock

programmes by dragging blocks from the blocks categories and assembling them into script sequences

as required.

There are three buttons at the bottom-right of this panel enabling you to zoom-out and zoom-in in

20% increments which enable you to see more or less detail of large block scripts. The (=) button

returns the panel to back to its default scale. Any zoom setting that you set is remembered and

remains in force the next time you open mBlock 5. I always try to create short scripts which fit

within the ‘Scripts’ area without any need to zoom-out or any scrolling up-and-down to see their

contents.

At the very top and on the extreme right of the ‘Scripts’ panel are two tabs. The default is labelled

‘Blocks’ - this is where you are right now, ready to create block scripts. The second of these two tabs is

there to open one of the two programming editors; so its label will vary depending whether you are on

the ’Devices’ tab or the ‘Sprites’ tab. If you are on the ’Devices’ tab, then it will be labelled ‘Arduino

C’ but if you are on the ‘Sprites’ tab then this will be labelled ‘Python’.

You need to be aware that if you have the ‘Devices’ tab selected, then clicking on the ‘Arduino C’ does

exactly that - it opens up an editor for programming in ‘Arduino C’ not ‘Python’. If you switch to

'Upload Mode' and use the (</>) 'pull-me-out' icon (shown on the next page) on the right edge of the

interface, this will show any Arduino code generated by your programming scripts.

Very usefully, this programming text can be copied and pasted into the Arduino editor to experiment

with this textual programming code if you want to; and similarly, with the ‘Sprites’ tab selected, then

clicking on ‘Python’ opens the ‘Python’ editor.

This too does not initially show any Python code equivalent to your block programming script, but if

you click the 'pull-me-out’ icon as described above it will also show you the textual code that the your

scripts have generated & you can also copy this and paste it into the Python editor screen for further

experimentation.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 19

Below the ‘Stage’ area and the three display buttons is the ‘Devices’, ‘Sprites’ and ‘Background’

categories panel, the contents of which change depending on which of the three tabs is currently active.

It defaults to displaying the ‘Devices’ tab on the left and the ‘Connect’ / ‘Mode’ sub-panel on the right.

If the ‘Sprites’ tab is activated, then the left-hand part becomes the ‘Sprites List’ and the right-hand

panel shows the buttons to access the ‘Costumes’ and ‘Sounds’ editors. However, if the ‘Background’

tab is activated then the left-hand part shows any added backdrops and a (+) button to access the

‘Backdrops Library’, whilst the right-hand panel remains the same by still showing the buttons to access

the ‘Costumes’ and ‘Sounds’ editors.

Before you start to control a connected robotics device (e.g. mBot) with mBlock 5 for the first time, a

window might pop up asking you to ‘Update Firmware’ and you should follow this advice by clicking

‘Update Now’. It will take 2 to 3 minutes for the device firmware to upgrade and you will need to close

& then restart mBlock5 to activate the upgrade.

On the right edge of the interface near the top of the ‘Scripts’ panel is a tab which suggests a fly-

out option. When clicked, this opens a sub-window which shows either ‘Python’ code as a

comparison to ‘Sprites’ block scripts or (if you are in ‘Upload’ mode) ‘Arduino’ code as comparison to

‘Devices’ block scripts.

Both code display types can be rolled back to the right- hand edge of the interface by clicking the

close icon which replaces the 'pull-me-out' icon when the code window is activated.

As mentioned on the previous page, the left-hand panel below the stage is divided horizontally, and the

bottom half is the ‘Devices’, ‘Sprites’ & ‘Background’ categories panel (one tab for switching to each).

But also, part of this sub-panel is taken up with the ‘Connect Your Device’ area.

This sub-section below the stage on

the left of the interface is very

important and it took me a little time

to understand the importance of the

first two of the three category tabs

that you can select: ‘Devices’,

‘Sprites’ & ‘Backgrounds’.

So, let’s deal with the ‘Backgrounds’

tab first. This, in a way, is the least

important of these three tabs as it is

for adding ‘backdrops’ or ‘scenery’ to

simple graphics and sound

programming activities which use the

stage as their primary output (just as

if they were projects created in

Scratch.

Giving the stage a sensible background rather than its remaining blank does improve the look of the

mBlock 5 interface and it is worth noting that a ‘thumbnail’ of any created backdrop image becomes the

icon for your file within the 'My Projects' management page.

mBot and Me
a Beginner’s Guide

Page 20 - mBot and Me - a Beginner’s Guide

mBlock 5 files saved to your computer do not have the thumbnail mentioned above; but

there is a rather nicely designed new mBlock 5 icon instead (shown here on the right).

Secondly, we will consider the rather more important ‘Sprites’ tab. ‘Sprites’ at their

simplest are characters that can be moved about on the stage to play a game or tell a story.

Like the ‘Stage’ itself, ‘Sprites’ are an essential part of Scratch projects where you create

scripts for each sprite causing them to move or interact (essentially, to ‘act’!). Sprites can nevertheless

become useful graphics to enhance robotics projects - see Chapter 14 (pages 83 to 95). In earlier

mBlock iterations, ‘Devices’ did not exist, and you could only add robotics block scripts to ‘Sprites’ -

but now in mBlock 5 you can only add robotics block scripts to ‘Devices’.

Thirdly and finally; and most important of all for robotics work is the ‘Devices’ tab. You can have more

than one robotics device available in the interface, but you can only connect to one of these devices at a

time.

With the ‘Devices’ tab selected, the panel shows the chosen robotics device (or multiple devices) and by

default it shows ‘Codey’ the ‘Codey-Rocket’ robot. There is also an ‘add more devices’ (+) button and

the 'Connect' sub-panel is to the right. Here, you simply click the ‘Connect’ button to make a

connection to your chosen device - but more about the complexities of connecting your computer to a

robotics device a little later…

… In the diagram on the previous page I have deleted the ‘Codey’ sprite (yes, confusingly, device

images are called sprites too!) and I have added the ‘mBot’ sprite since that is the device that this book is

all about. It is here that you can choose to add another robotics device from the list, e.g. ‘mBot’. To do

this, I pressed the (+) icon in the bottom left panel which opened the ‘Device Library’ window.

If you double-click on any icon in the ‘Device Library’ then it will be added into the bottom panel of the

interface (and you can have more than one mBot icon here, but I’m fairly sure that this is not really a

good idea!). If you do not want a device to remain in the interface (e.g. ‘Codey-Rocket’) then you just

click on the (X) button on the corner of the device sprite to remove it.

Device sprite icons in the device library have three states. Newly added and previously

unused device sprites have a green plus-sign (+) button in the corner indicating ‘new’. The

basic sprite for each device otherwise, is the ‘ready to go’ (OK to use) icon shown top-

right; whilst the sprite ‘update needed’ (this device has a firmware update available) has a

green download arrow button in the corner of the sprite as shown bottom-right.

Click this green button to download the update; but do remember that you must then close down and

restart the app. to enable the update.

It’s very important to realise that if you click on the ‘mBot’ sprite here in the ‘Devices’ panel it will

cause the programming blocks in the ‘Blocks’ area to dynamically change to ‘mBot’ specific

programming blocks from what were by default ‘Codey’ specific programming blocks. The number of

block groups available to each device changes too; clever stuff, and very fast!

Ignoring the ‘Scripts’ panel occupying most of your screen, the left-hand part of the ‘Edit Page’

interface looks essentially like the screenshot shown on the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 21

The stage is by default blank, white in

colour and shows a ‘Panda’ sprite in the

centre, but I always start I start mBlock

5 with my own "mBot Setup Page".

‘Set-Up’ file from a shortcut on my

desktop. This file has the specific

backdrop and single sprite icon shown

here - but more about this file later.

The 'Sprites' and 'Backgrounds' sub-

panels shows icons representing any

sprites or backgrounds added to a

project and these sub-panels have

identical 'Costumes' and 'Sounds'

buttons. Each button opening the

applicable editor for each. The

costumes button opens the graphics

editor which allows you to edit or create

either sprites or backgrounds (depending

upon which sub-panel tab you were on

when you clicked the button). Use the

(X) button to close each editor.

There seems to be a problem with

saving any graphic that you draw in

either editor - such graphics are OK and

are useable when a project is created but

currently, there is to be no way of

adding a newly drawn sprite ‘Costume’

to the ‘Costumes Library’ or a

background to the ‘Backdrops Library’.

Any sprites or backgrounds created

elsewhere (I experimented by uploading

into the costumes library a file which I

had drawn and saved in mBlock 3 last

year) can be uploaded and used on

demand - but newly drawn graphics

can’t be saved as currently there is no

obvious save to library button in

mBlock 5.

I tried uploading a test backdrop into the

'My Backdrops' library using one

from my old mBlock 3 computer files;

but mBlock 5 now limits these to a max.

upload file size of 2Mb and I had to adjust

it in a graphics editor to get it to upload!

mBot and Me
a Beginner’s Guide

Page 22 - mBot and Me - a Beginner’s Guide

Chapter 6 - Setting-up and Connecting mBot

Because mBlock 5 is now written in HTML5 and JavaScript you don’t have to download the application

to your computer; it can be used ‘online’. Just connect your device (mBot) first and then start mLink

and then open mBlock Web using this address:

https://ide.makeblock.com/#/

mBlock Web does work very well but installing mBlock 5 software on to your PC to work ‘offline’ is a

good idea. I have already mentioned that the ‘Sign-In’ icon on the menu bar of mBlock 5 will open

mLink. You can download mLink if you need to from the address shown below; and as mentioned on

page 6 you can also download mBlock5 and its predecessor mBlock 3 for a variety of different computer

platforms from the following address:

http://www.mblock.cc/mblock-software/

Connecting your chosen Device (mBot)

The simplest way to connect your device to your

PC is by using the supplied USB serial lead. The

first time that I tried this it was quick & faultless;

but you do need to remember to press the

‘Connect’ button in the ‘Devices’ panel after the

interface opens and after you have selected

mBot as your chosen device.

MOST IMPORTANTLY: You must remember to

press ‘Connect’ every time you load in a

previously created project from your files.

If the ‘Mode’ switch (which is just above the ‘Connect’ button in the ‘Devices’ panel) is pushed to the

right and is blue in colour then it is in the ‘Live’ (ON) position; if you slide it to the left, it turns grey to

indicate the ‘Upload’ (OFF) position.

You only need to use ‘Upload’ mode if you want to upload a script that you have written into mBot’s

flash memory to enable mBot to run independently from your computer in what is also called ‘Offline

Mode’. You also need to use ‘Upload’ mode if you want to see your scripts in Arduino code.

It’s opposite, ‘Live’ is the norm; also known as ‘Online Mode’ or ’Test Mode’ this (for normal, everyday

programming usage where you don’t have to upload codes into a stand-alone mBot) is where you can

control mBot as long as it is connected to your PC by either cable, wireless or Bluetooth dongle.

It doesn’t seem to matter if your device; ‘mBot’ in our case, is switched on and the serial lead connected

before you attempt to make the connection - any permutation or any order in doing this seems to work

and for the majority of users, this should always work seamlessly.

http://www.mblock.cc/mblock-software/

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 23

The ‘Connect’ dialogue screen (on its default USB tab - shown

here on the right) recognises that a device has been connected

and will show the COM (serial) port trying to connect. If not, it

just waits until you switch mBot on and connect the serial lead

between the device and the computer; and once a connection is

detected the dialogue box will show the connection port number.

In either case, you then just click the ‘Connect’ button at the

bottom of the dialogue and mBot will beep once to acknowledge

that a connection has been made.

As already described, you may find that an 'Update Firmware'

dialogue will appear when you connect mBot to mBlock for the

first time. This suggests that your device needs an update to its

firmware, so just click to accept the update (which is fairly quick to complete).

Remember to close the app. afterwards and then restart it again to enable the update.

Despite Makeblock suggesting that connecting devices to mBlock 5 is easy (which by-and-large it is)

everything is not always as straightforward as suggested and from what I have seen on internet sites,

other users have experienced similar connection issues too and, in my opinion, a little more explanation /

discussion on the connection of Makeblock’s robotics devices would be gratefully received by many

users if Makeblock could detail these clearly.

You may have some of these problems too!

The second time I tried to connect mBot to mBlock 5 it just would not show a COM port to enable a

connection to be made - nothing! Later I tried again - and making a connection this time worked OK.

This went on and on for days and days with what appeared to be an intermittent connection problem -

how strange & why?

I tried what other users had been recommended on the Makeblock Forum - reinstalling the software - no

different - running it as an administrator - no different. I also tried rather more advanced techniques like

uninstalling all of the USB Hubs in my PC’s ‘Device Manager’ and rebooting to let it reinstall drivers

etc. and nothing; just still the same intermittent connection issues.

In my PC’s ‘Device Manager’ >’USB Hub Properties’>’Power Management’ section I prevented all of

the USB Hubs turning off to save power - still nothing.

I manually reinstalled the USB-SERIAL CH340 driver which provides the serial link to mBot too and

still had the same (and increasingly annoying) intermittent connection problem. Strangely, the

connection between my PC and mBot always worked when I switched back to using mBlock 3 and

when I got around to connecting my Surface tablet to mBot using mBlock 5 it always worked there too

with no connection problems at all.

So, the problem looked to be with my desktop PC - a hardware conflict somehow, and then only

sometimes…

mBot and Me
a Beginner’s Guide

Page 24 - mBot and Me - a Beginner’s Guide

…One afternoon, after a particularly annoying and frustrating session of trying to connect mBot to my

PC, I gave up and was on my way out of my study when my printer ‘gonged’ as it shut down (which it

does after a couple of hours of inactivity) a light-bulb moment - THE PRINTER had been ON! So, I

went back and restarted mBlock 5 and it instantly saw that the ‘Connection’ panel showed a connection

on COM5. I clicked to make the connection and mBot was immediately controllable from the PC.

It looked like the conflict might indeed be with

the printer, so I closed mBlock 5 and restarted the

printer. Then I restarted mBlock 5 and activated

mBot. This time, no connection showed in the

panel and mBlock 5 was sitting patiently waiting

for a connection. Leaving mBlock 5 in that

waiting state I turned my printer off - after a few

seconds COM5 magically showed in mBlock 5’s

‘Connect’ dialogue box.

YES - it was the printer (which was connected

via a USB port on my PC) that was causing the

conflict; even though the printer was connected to

Printer Port (LPT1).

When I researched this later, it is apparently a

known fact that printer drivers often take control

of all USB ports (& mBlock 5 didn’t like that,

although mBlock 3 seemed to tolerate it).

So, a good habit: - Always shut down a printer before trying to connect with mBot.

When a connection is made, the connect / connected panel shows ‘Device connected’, and you can see

from the diagram above that mBot is the active device. As well as the ‘Upload / Live Mode’ switch

there are now two new option buttons at the bottom of the panel; a ‘Disconnect’ button and a ‘Settings’

button.

Makeblock has not made the significance of these buttons very clear at all. If you click the ‘Setting’

button, it clears the panel and shows at the top just one uninspiring blue text option entitled ‘Update

Firmware’ - this text doesn’t look like a button, but it is and if you hover over it then does look like a

blue button - click it and a new dialogue box will appear in the middle of the screen and this dialogue

box is VERY important.

The dialogue box that has just opened shows that the chosen device is mBot and it gives you two

choices…

… If you click in the ‘Firmware Version’ box (see the diagram below) then you have the option to

choose to update either 'Online firmware’ OR 'Factory firmware’.

Online firmware updates mBot with the latest operating system firmware from Makeblock; whilst the

other setting, Factory firmware resets mBot’s flash memory to the latest update of the default settings.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 25

You may have probably (as recommended earlier) updated the ‘Online firmware’ to the latest version,

but if not, you should choose that option now by pressing the blue 'Updates' button to update mBot with

the latest firmware version available.

On completion, the dialogue box suggests that you

shut down the device (mBot) & restart it and

connect to mBlock again and you should do as the

dialogue requests. mBlock will then connect to

mBot just as it did before with everything working

as it should.

You only need to choose to update ‘Factory

firmware’ if you have for some reason changed

the firmware in mBots flash memory by uploading

into it (by design or accident!) a programme of

your own.

N.B. You may also need to update both online and

factory firmware as a recovery measure if for

some reason mBot goes ‘loopy’ and start running

amok when running a test script.

I don’t know why mBot misbehaves but this sometimes happens, and other users have documented it

frequently on Makeblock forum pages. So, if you are working with the robot on a table, bench or

desktop then beware!

Look upon ‘Device Firmware Updates’ as a sort of ‘blood transfusion’ for mBot’s mCore brain. Do not

be afraid of giving mBot’s firmware another ‘shot’ if you feel that you need to. Other mBot users

(particularly in mBlock 3) have recommended device updates as a cure-all panacea and you will find

that it usually stops any unpredictable behaviour if you re-run the same script that you were testing

before.

Downloading and installing the latest Windows Arduino Board Driver from Makeblock is not a bad idea

either as part of this global ‘blood transfusion’. Makeblock boards use an FTDI chip for their serial

connections. In the older mBlock 3 software, there is an option under the ‘Connect’ menu that says

‘Install Arduino Driver’ which sets up the serial driver that needs to be installed for Makeblock boards.

In mBlock 5 however there is no such option.

I got this driver from Makeblock using the following link:

http://download.makeblock.com/Makeblock_Windows%20arduinodriver.zip

So, there is a lot more to making a successful connection between mBot and mBlock 5 via USB than

users are led to believe; - but what about connection via Bluetooth.

If you have Bluetooth available on your own PC, then when the ‘Connect Device’ window pops up you

would think that you are just meant to choose the ‘Bluetooth 4.0’ tab on the ‘Connect’ panel and

the Bluetooth port of your device would be automatically detected and you would then expect to just

click the ‘Connect’ button again…

mBot and Me
a Beginner’s Guide

Page 26 - mBot and Me - a Beginner’s Guide

… HOWEVER, mBlock 5 doesn’t currently support any Bluetooth connection with PC’s with

either built-in (or external) third-party Bluetooth! I have asked Makeblock and they say that they are

trying to make mBlock 5 support third-party Bluetooth just like mBlock 3, but to solve this problem it

was suggested by their support team that I had to buy the Makeblock Bluetooth Dongle which has been

specifically created to communicate with their robots.

They suggest that the official Bluetooth Dongle guarantees compatibility and they say that they are not

sure whether any other third-party Bluetooth dongles are compatible with their robots as connection

issues when trying to use these are individually hard to solve.

Makeblock say that you just plug their Bluetooth dongle into any available USB port on your PC,

power-on mBot, pair them, and start programming.

The Makeblock supplied Bluetooth dongle that I bought for £15

via Amazon in the UK did connect mBot to mBlock 5 - but

once again, making that connection was not quite as

straightforward as they suggest.

Theoretically, you just plug the dongle into any available port

on your PC and it then very straightforwardly pairs up with

mBot which allows them to successfully establish a connection

with each other.

But for me, connecting mBot to the mBlock 5 interface was

once again a little more complex.

Since this is called a ‘Bluetooth’ dongle, I thought naively (& why wouldn’t I?) that you had to

choose the Bluetooth 4.0 tab in the ‘Connect’ dialogue window; and try as I might I couldn’t get the

mBlock 5 software to see any available devices.

Eventually (several hours later) after reinstalling the software, trying different ports, restarting the

computer etc. etc. I switched back to the USB connection tab in the connect device window and just

happened to notice that the COM port had changed from the one I had been using for a serial lead

connection (COM4) to the port on the front of my PCs case (COM5) - the port where I had plugged in

the dongle.

I pressed the ‘Connect’ button and ‘hey-presto’ a connection was made, mBot beeping once in

acknowledgement and working perfectly and untethered from the PC for the first time using mBlock 5.

On checking my PC, it showed in the ‘Device Manager > ‘Ports (COM & LPT)’ section: ‘USB-

SERIAL CH340 (COM5)’ as opposed to seeing ‘USB-SERIAL CH340 (COM4)’ which it does when I

connect using a serial lead (and the dongle worked in exactly the same way on my Surface tablet too -

which has built-in Bluetooth).

The dongle also worked fine when I tested it with mBlock 3, connecting as a serial device (as described

above); and it also worked with no conflicts whilst my old external Bluetooth USB Adaptor device was

still plugged in the same port on my desktop PC where it had always been.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 27

It’s a pity that Makeblock had not CLEARLY mentioned

anywhere that mBlock 5 treats the Makeblock

BLUETOOTH Dongle as a Serial device not as a

Bluetooth device.

The ‘GitBook’ help file only says: “Makeblock Bluetooth

Adapter is a special gadget for Makeblock's products to

connect to your computer via the USB without the use of a

USB cable. Please refer to the product guide for detailed

guide.”

‘Via USB without a cable’ is a clue, but not a very clear

one. The guide then goes into to a massive section on

Bluetooth connections! The tiny booklet of info. pages

that came with the dongle (shown actual size here on the

right) did say to “Choose the serial port …” - but in 7-point font,

such an easily to miss line!).

I am assuming, although it hasn’t been stated as such, that

the dongle does transmit to (and receive from) devices

using Bluetooth & it does something actually rather clever

in passing this data to-and-fro via the USB port. - If this is

the case, then why not say so; clearly!

Do remember that only when the mBlock 5 software on your PC and the mCore board on mBot are

connected to each other, can you control mBot by writing ‘Scripts’.

I use the USB Serial Cable most of the time and switch to Bluetooth only when I want to operate

mBot running free on the ground - a cable does restrict the travel distance of mBot considerably.

The controlling connection can be by either Serial Cable, Bluetooth or, if applicable (because you

bought the education version), 2.4GHz wireless. You can solve the problem of communicating with

mBot without a wire being attached to it. by using the aforementioned USB (Bluetooth) dongle or the

alternative to the standard Bluetooth module on mBot, the 2.4G wireless module. Setting up a 2.4G

connection if you have this, is very straight forward. Just insert the 2.4G adapter (receiver) into your PC

and pair it with the 2.4G module on mBot and after successful pairing, just click ‘Connect’. Do

remember too, to turn mBot ON with the little switch on the side of the mCore board!

On power-up, and again when the USB serial lead is inserted, mBot outputs three rising notes on its

buzzer followed by both of the LEDs on its mCore board flashing Red, Green, Blue and then turning

White to signify ready. Sadly, the White LED lights remain on and you have to (but don’t need to) turn

them off using a suitable programming block by setting all of the colour settings to 0. When connecting

mBot to your computer the PC produces a short burble of sound in acknowledgement of the connection

being made.

The connection made, everything is ready - you are now able to begin your mBot / mBlock

programming journey and test your mBot for real.

mBot and Me
a Beginner’s Guide

Page 28 - mBot and Me - a Beginner’s Guide

Chapter 7 - About mBot’s Remote Control Modes

Until you get used to your mBot, it’s not a bad idea (after first power-up) to pick up mBot and try

pressing the on-board button to see if it switches between its three pre-set modes (IR control, Obstacle

Avoidance and Line-Following) - it should, but if that doesn’t work then you will need to use the ‘Reset

Default Program’ option described in some detail earlier.

After power-up and connection I usually test that mBot is connected to mBlock 5 by carrying out the

following quick test. In the ‘Blocks Area’ switch to the

‘Show’ categories of blocks. The topmost block in this

category is the stack block shown on the right:

There is no need to drag this programming block on to the ‘Scripts Area’ of the mBlock interface - but

you could if you want to. This block sets the colour of the mCore LED lights and if you just click it (see

the guidance advice below) then mBots LEDs will both briefly turn red and then go off again.

N.B. A good technique to develop when clicking on programming blocks (to either drag them or activate

them) is to always avoid any areas on the block expecting input e.g. avoid the ‘all’ arrow or the

‘shows colour’ or the ‘red’ coloured bubble window or the ‘1’ secs bubble window (all of which can be

seen in the block above).

About the IR Remote and the 3 pre-set Modes of Default Operation

You can also use the excellent little IR remote

control that comes as part of your mBot kit to

start controlling mBot without connecting to

mBot at all. mBot has a default factory setting

of three pre-set modes, IR control mode,

Obstacle Avoidance mode and Line-

Following mode all of which can be operated

using the IR remote control or, as mentioned

above, by pressing the on-board button instead

to toggle (step) through each of these options

in turn.

Once you have gained some confidence and

have started messing about with mBot, you

may find that the IR remote control will not

work anymore, since the out-of-the-box default

functions are no longer loaded. This happened

to us very early on and Emma was very

disappointed until I worked out what I had

messed up and what to do to fix it. I had

somehow uploaded a programme into mBots

memory by mistake.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 29

When you first turn on mBot, it should be in IR control mode by default and the on-board RGB LEDs

are both white.

If mBot is in ‘Obstacle Avoidance’ mode, then the on-board RGB LEDs are green. Place mBot on the

floor, and watch it avoid obstacles.

If mBot is in ‘Line-Following’ mode, then the on-board RGB LEDs are blue. Place mBot on the black

line-follower map and watch it track around the figure-of-eight line.

Pressing button A on the IR remote will stop mBot in Obstacle Avoidance and Line-Following modes

using, whilst the arrow keys can be used for manual driving /steering and the number keys can be used

to set mBot’s speed - 0 = slow & 9 = fast!

Remember, you may need to change mBot back to its default ‘Factory Firmware’ setting if these IR

remote-control mode settings do not work correctly. This can (as mentioned on the previous page) be a

source of much confusion if you forget to do so.

Controlling mBot using free Apps (for Tablets and Phones)

The original mBot app was probably the first mBot app to be written by ‘Xeecos’, an Android

developer specialising in robotics stuff. It is no longer available in the Google Play Store.

It therefore took me a bit of trouble to find and

install this on my old Galaxy SII phone and

only seems to be available by APK download.

The mBot app’s icon looks like the image

shown on the right and its interface looks

good; but in truth it really is rather primitive.

It is a very basic controller & has essentially

the same three default modes as if you were

using the IR remote control. I was impressed

however that it actually worked on my old SII

phone (see the paragraph about my phone on

the next page).

This app made a Bluetooth connection with mBot easily and it started online in ‘Manual Mode’ by

default. This is where you can drive mBot with a ‘joystick’ type controller which has an illuminated

speed indicator - this seemed to be programmed incorrectly - mBot turns left when the joystick is pushed

right & turns right when it is pushed left. Forwards & Backwards are OK - funny, but the joystick on

the rather similar ‘Drive’ screen of the much more workmanlike Makeblock app (described on the next

page) has just the same error.

The interface has four buttons on the right of the screen - one to toot the buzzer which is very boring and

just toggles through 7 pre-defined tones; a ‘Speed Up, button which does not as you would expect alter

the speed of mBots motors - it just gives a 5 sec. burst ahead with an on-screen countdown timer; and a

light button which toggles through 6 simple (& also rather boring) changes to mBots LED lights.

mBot and Me
a Beginner’s Guide

Page 30 - mBot and Me - a Beginner’s Guide

On the left of the interface is a vertical strip containing five more main-function controls:

• ‘Unmanned’ which should be ‘obstacle avoidance’ mode, but it doesn’t seem to avoid things at all!

• ‘Manual’ (as described on the previous page). This is the default control - manual driving mode.

• ‘Track’ which is the standard line following mode, mBot runs slowly, but it works very well.

• ‘G-Sensor’ is possibly the best feature here and uses phone or tablet tilt to control steering.

• ‘Shake’ mode has a switch to set forwards or backwards movement and a then a violent shake of

your phone or tablet will move mBot a bit (about 60mm a time).

If you do have a suitable phone or tablet, then you do need to install the much more sophisticated

Makeblock App, also written by Xeecos which can also be downloaded from Google Play store.

N.B. I couldn’t do this when we first got mBot because at the time of testing, my phone was a ‘steam-

driven’ Galaxy SII and is not modern enough. I updated the operating system to Android ‘Jellybean’

4.12 (the highest update possible) but the Makeblock App needs ‘Jellybean’ 4.3 or newer to be

compatible. I couldn’t do this with my own tablet either because it’s a Microsoft ‘Surface’ which is not

supported. So, to test it I had to ‘borrow’ Emma’s Galaxy tablet whilst she was asleep!

Makeblock 3.4.0 is available for Android (Intel x86 chip) devices and at last I now have it on my new

Galaxy Note 9 phone. The Makeblock App is a free and easily downloadable app for both Android and

Apple devices that has been specifically designed for controlling a variety of Makeblock robots.

The Makeblock App’s icon looks like the image on the left. It pairs very easy with either a

phone or a tablet and it connects automatically with mBot via Bluetooth. Once the

Makeblock App is installed, you can play with mBot immediately and it has controllers for

all the default functions that you can choose with the IR remote or the on-board button.

On a large screen tablet (or my new ‘phablet’) this is great, but it is quite hard work using this app on the

screen of a small phone. The software uses ‘Tiles’ which you scroll through and click to choose options

and sub-options and there are the following tiles to choose from initially:

• ‘Play’ - this tile has a choice of 4 modes: ‘Drive’, ‘Draw & Run’, ‘Musician’ or ‘Voice Control’.

• ‘Code’ - this links you straight into the mBlock ‘Blockly’ App which Makeblock have developed to

teach the basics of coding using mBot & mBot Ranger (described in some detail on the next page).

• ‘Create’ - this tile is probably the best of these options and it is where you can drag controls to build

sophisticated consoles (as shown in the diagram on the next page) and then save them. I was amazed

to find that the app has controllers for the most popular of mBots optional add-on packs too! There

are in fact more than 30 predefined modular components which can control different sensors or

execute various commands.

• ‘Build’ - this shows a wonderful (but rather pointless since you’ve probably built it already) 3D

animation of how to assemble mBot.

• ‘Expand’ - this opens a sub-menu of several control options for the optional add-on pack models.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 31

In the ’Create’ section, there is a

fantastic design mode (just click the

‘Design’ button at the top to edit your

own interface screen & then the ‘Play’

button to see what your added control

icon does). To create your own

customized control panels, you just

drag different control and feedback

devices from a palette to the control

panel area and then you just tap on

them to edit them. This ‘Create’

component is a very well thought out,

intuitive to use and is a brilliant way

for children to interact with mBot.

You can immediately use a joystick-

like controller function to drive mBot,

changing speed and direction easily. Emma loved it, took over straight away and within minutes had

found out how and had effortlessly created and saved her own controller screen. You can choose which

ports to monitor and display feedback. These can be in the form of analogue graphs or awesomely

good-looking numeric displays (see above). Most importantly, you can execute commands using simple

block coding - drag-and-drop style. This is a very good precursor to programming using the excellent

features of the ‘Code’ component (see the next page).

The mBlock Blockly App is a supposedly ‘game-based’ app (built once again by Xeecos)

for Makeblock programmable robots and it has an icon that looks like the image on the

right. It is a simple programming learning centre using drag ’n drop block programming

where you can only progress by completing sections in sequence. Makeblock say that it

introduces students to the world of robotic programming on mobile devices. They describe their variant

of Blockly as 'immersive game-based learning' where you complete tasks and learn coding skills

gradually using intuitive block-based programming. They describe these tasks as 'games', but they

aren’t really games (unless the whole experience of programming mBot is seen as a game!).

These simple tutorials are quite easy to follow but you can't progress to the next level unless you get the

current exercise correct and this can be a little off-putting at times if you don’t quite get the point of

what is being asked (since they are not always described in grammatically correct English).

 Also, whilst you are in the tutorial there is no opportunity to experiment with scripts of your own which

is also a bit frustrating for a bright young user since each exercise only makes the relevant blocks

required for the exercise available, leaving most of the block categories greyed-out; and moving on to

the next exercise is the only option! I was amazed how fast Emma worked her way through each of the

exercises (although she did get stuck once) and she was very pleased with herself when she completed

all of the tasks on each of the ten levels.

However, this app. does have an annoyingly incessant background track sound (and ‘Mr Panda’ as a

fairly sedentary ‘instructor’) and it is also hard to exit since there is no back button allowing an easy

return to the main tile (menu) group.

mBot and Me
a Beginner’s Guide

Page 32 - mBot and Me - a Beginner’s Guide

The tutorials though are fun nevertheless and I think that I would recommend this as a first step to

programming mBot for young children since they do get the satisfaction of making the robot do

something themselves at every stage of the ten levels of instruction. These ten levels can be completed

by a competent adult in about an hour.

After completing all of the tasks you then have some understanding of how the ‘Blockly’ interface works

and now, when you click the ‘Create’ button at the bottom of the main screen, you finally get access to

the full ‘Blockly’ programming interface with all of the block categories available.

Since this is written in 'Blockly', the blocks are a little different to those used in Scratch and mBlock 5,

but the principles and concepts are very similar, and I have seen first-hand that a bright eight-year-old

can very easily transfer the skills gained here to programming in mBlock 5 after using the ‘Blockly’ app.

‘Blockly’ dates back to 2011 and whilst not quite the same, visually resembles Scratch. It is a Google

open-source library project for drag-and-drop block coding and typically runs in a web browser. It is

primarily used for computer science education but also gives advanced users a way to write their own

scripts for app creation. It has a very neat way of changing which blocks are shown in the toolbox

palette on the left of the interface too. Blockly can be used to generate JavaScript, Python, PHP or Dart

code and it can also be customised to generate code in any textual computer language.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 33

Chapter 8 - All About Batteries

Powering mBot - what batteries should you use?

mBots box does state clearly that batteries are not included and mBot comes with a battery pack to

which you need to add 4 AA batteries - it is shown in the instructions being attached to mBots chassis

using ‘Velcro’ strips - we omitted these which sensibly allowed the battery pack to slide in-and-out from

under the mCore board whenever we needed to change the batteries. The four ‘Duracell Plus’ batteries

we inserted at build-time lasted about 4 weeks of daily use.

N.B. In addition to the above, the IR remote needs a CR2025 3V Lithium, button type battery (e.g.

Panasonic CR2025) also not supplied in the box. These cost about 40p each.

…BUT on my mBot, low batteries were the cause of a rather worrying blinking

LED and Tick-Tick sound problem (and possibly an ‘iffy’ Bluetooth connection

problem too). All Arduino boards do blink a tiny LED light (marked by an L

printed next to it on the board).

Note: - Everything does get sluggish (inc. your scripts) when the batteries are low.

After about 6 weeks, I took the plunge and we switched to using a 3.7V

rechargeable Lithium Ion Polymer (LiPo) battery which is very practical

as the mBot board can charge the battery via its USB cable. These are

thin, light & powerful and include integral protection circuitry.

I had thought of buying one from China via eBay since sourcing one of

these in the UK seemed initially to be difficult; and what about getting

the right connector? (the eBay pages were a bit vague on these) - it

needed to be a 2mm pitch JST-PH connector (which is a 2mm spacing

between the pins) - but then I found that the excellent and friendly ‘Cool

Components’ in Hampshire had 2000mAh ones in stock for £15.50 (inc.

speedy delivery - within 24 hours!).

Pundits in the USA advise a 2500 mAh LiPo, however 1000 or 1200

mAh batteries are quoted as being quite acceptable so I am expecting the

2000mAh one to work well. A small battery box (measuring 50mm x 33mm x 10mm) is supplied as

part of the mBot components but this was far too small since the 2000mAh LiPo battery that I had

bought was 54mm x 54mm x 6mm. This was not a problem since we just used one of the ‘Velcro’ strips

omitted earlier to hold it in place under the mCore board - this is a good arrangement. It’s hard to

understand Makeblock’s reasoning for including a LiPo battery box but with NO information on

purchasing a suitable LiPo battery to fit in it.

When you plug the USB cable into mBot with a LiPo battery attached, one of two charging LEDs near

the JST port light up. A steady red light indicates charging whilst a solid green indicates a fully charged

battery. Apparently, if the green LED is flashing, it indicates a dead / bad LiPo battery. My new battery

worked as prescribed and had some power in it, but it was fully charged after about 2 hours on USB.

no copyright

infringement is

intended with
the use of this

image

mBot and Me
a Beginner’s Guide

Page 34 - mBot and Me - a Beginner’s Guide

Additional Facts about mBot using AA batteries & LiPo batteries.

1. mBot can operate from AA batteries (4 x l,5V) or a LiPo battery (1 x 3.7V).

2. mBot needs +5V internally to operate. mBot power supplied via a TP3605 switching regulator (U1).

This regulator will supply the correct voltage to mBot provided there is sufficient energy in either

the AA cells or the LiPo cell.

mBot will cease to operate once the under-voltage threshold of the TP3056 is reached. The mBot

motors are supplied directly from the battery, not via the regulator. This means that as the batteries

deplete the motor speed will decrease.

3. mBot will not charge the AA cells connected to JP2 (barrel).

4. mBot will however charge a LiPo cell connected to PI (JST).

5. mBot has an onboard charger TP4056 (U2) that will charge the LiPo battery via the USB

connector.

6. The onboard charger is programmed to charge the LiPo cell at a maximum current of 1 amp. This is

interesting as most USB ports will generally only supply 500mA.

If you wish to charge the mBot LiPo cell in the shortest time, then ensure that you use a USB

source that will supply more than 1 amp.

7. If the mBot on board charger has a > 1amp source connected, then charge time = capacity (mAh /

1000) hours. If connected to a standard USB port limited to 500mA then charge time = (mAh / 500)

hours

8. The TP4056 chip has a battery over temperature cut-out but this has not been implemented by

MakeBlock.

9. You may have AA cells and LiPo cell connected at the same time, but mBot will deplete the AA

cells first and then switch over to the LiPo cell.

10. Measuring battery charge level using battery voltage will not provide a reliable indication of

remaining capacity.

11. The mBot on-board charger (TP4056) is designed to trickle charge the LiPo battery at 130mA if the

battery voltage is less than 2.9 volts.

Once the battery voltage rises to above 2.9 volts the charger will switch to high current mode and

charge at about 1 amp, provided the USB power source can supply 1 amp.

This trickle charge rate is designed to protect a over discharged battery. If the battery is over

discharged, then the 130mA trickle charge can take many hours to get the battery up to 2.9 volts so

that the TP4056 can safely apply the high charge current of 1 amp.

12. The mBot on-board power supply (TP3605) will supply +5 volts to the mBot until the battery

voltage falls to about 3.0 volts at which point the power supply will no longer provide power to the

mBot. This is done to protect the LiPo battery.

N.B. A 3.7volt LiPo battery with a terminal voltage of 3.0 volts is completely discharged. Taking

any more energy out of the battery may damage it.

After a year of problem-free LiPo battery usage, I am so glad that I took the plunge & bought it.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 35

Chapter 9 - mBlock 5 / Scratch - the Basics

mBlock 5 has its own robotics-specific programming blocks. These are additional to the standard

Scratch 3 blocks, allowing each of the many ‘Me’ sensors and actuators available for Makeblock devices

to be queried and controlled. You can also write sophisticated programmes for any Arduino based

electronics device; but you don’t however just have to programme robotics or electronics devices with

the mBlock software. You can also use this software, just like its parent (Scratch), to write interactive

stories, design games and create sophisticated visual effects.

With mBlock 5 software installed on your computer you can easily programme Scratch code sequences

by just dragging, dropping, linking and fitting together colour-coded building blocks that represent

control structures, assignments or actions.

In computer programming, a subroutine is a sequence of instructions grouped together (under a

descriptive name) designed to perform a specific task. This named sequence can then be used, or

‘called’, in programmes whenever that task needs to be performed. In different programming languages,

a subroutine may be called a ‘Procedure’, a ‘Function’ or a ‘Macro’. A ‘Script’ is the Scratch word for

such a subroutine which describes a collection or ‘Stack’ of blocks that all interlock with one another.

To create a script, you just drag blocks out of the ‘Blocks’ area and graphically assemble them as a series

of connected blocks in the ‘Scripts’ area. A Scratch (or mBlock 5) script is defined as a set of blocks

that begins with a ‘Hat’ block and therefore usually consist of at least two blocks.

A script fragment is a block or set of blocks in the scripts area that is incomplete because it is missing a

‘Hat’ block. It is possible to run script fragment blocks by just clicking on them in the ‘Blocks’ area of

the interface (as mentioned on page 28). This page also described a good habit to develop when clicking

on programming blocks (to either drag them or activate them) - always avoid clicking on areas on the

block expecting further user input. A script fragment will not run during normal execution of a project,

because nothing triggers the code, but they do have their uses to set, or reset, things.

To start or ‘Run’ a script, just click on its ‘Hat’ block or press the ‘Green Flag’ button below the stage.

To remove a script, either right-click and choose ‘Delete Block’ or click and drag it over the ‘Blocks’

area where you will see it turn grey and a ‘Trash Can’ icon will appear - just let go of the blocks

anywhere when this area turns grey.

The order of blocks in a script is very important as they determine how sprites interact with each other

and the stage backdrop. It is considered good-practise to attach ‘Comments’ boxes to ‘Scripts’ to

explain what certain blocks do and what the script's purpose is - I always try to add a comment to every

script to describe its purpose and other comments for individual blocks if an explanation or reminder is

necessary.

After you have created your scripts in the ‘Scripts’ area of the interface you can (but you don’t have to)

right-click the background and select ‘Clean Up Blocks’. Doing so let’s your scripts be organized

automatically and neatly with their left edges aligned. This block alignment doesn’t account for any

comments boxes that you may add to your scripts and these may overlap after an auto clean up.

mBot and Me
a Beginner’s Guide

Page 36 - mBot and Me - a Beginner’s Guide

About Scratch Programming Block Shapes (as used in mBlock 5)

There are five shapes of programming blocks which can be connected to each other vertically to create

‘Scripts’. Each data type has its own block shape and specially shaped slots, bumps and notches.

‘Stack’ blocks, ‘Reporter’ blocks and ‘Boolean’ blocks are all capable of dynamically resizing too and

will stretch or shrink horizontally to accommodate other blocks or typed data inserted where individual

values are needed. Every block shape is designed so that it can do one or more of the following:

 Start a script. End a script. Fit inside other blocks. Contain other blocks.

There are six different block shapes and each type (‘Hat’, ‘Stack’, ‘Reporter’, ‘Boolean’, ‘Wrap’ or

‘Cap’) has its own shape and many have a shaped slot for other blocks to be inserted (or 'nested').

1. ‘Hat’ blocks are the blocks that start every script. They are shaped with a

rounded top and a bump at the bottom, so you can only place blocks below

them. Each Hat block type is activated by a specified method, enabling

different scripts to be started at different times. The general shape of a Hat

block is shown on the right:

2. A ‘Stack’ Block is a rectangular block that can fit above or below other

blocks with a notch at the top and a bump on the bottom for connecting to

other blocks. ‘Stack’ blocks make up most of the blocks available in every

category except in the ‘Operators’ block group. They perform specific

commands and when two or more stack blocks are connected to form a ‘Script’ then their individual

commands will execute in sequence order from top to bottom. The shape of a typical stack block is

shown on the right:

3. ‘Reporter’ blocks are elongated blocks with rounded ends and are designed to fit into,

(nested inside) matching shaped slots in other blocks wherever a value (either a

number or a text string) is needed. They have no bumps or notches and can’t

therefore can't be used alone. To quickly view the value of a reporter block, simply click it and a

pop-up bubble will display its value. A typical Reporter Block is shown on the right:

4. ‘Boolean’ blocks are elongated hexagonal blocks, shaped like the Boolean

elements in flowcharts and they fit into corresponding hexagonal slots in other

blocks; they too have no bumps or notches and therefore can’t be used alone.

A Boolean block contains a condition, which can be either ‘true’ or ‘false’ or the numbers ‘1’ and

‘0’ depending on their usage in a script. A common use for a ‘Boolean’ block is within an ‘If …

Then’ ‘C’ block. A typical Boolean Block is shown on the right:

5. ‘C’ blocks are also sometimes known as ‘Wrap’ blocks. These blocks loop

any blocks contained within the ‘C’ checking if a condition is true before

exiting. There are five types of ‘C’ blocks, found in the ‘Control’

category. ‘C’ blocks can be either bumped at the bottom for further

connecting, or flat (capped).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 37

6. There are two specific ‘Cap’ blocks - ‘Stop all’ and the ‘Forever’ loop ‘C’

block to be found in mBlock 5 in the ‘Control’ category. Cap blocks are used

to terminate scripts. They are shaped with a notch at the top and they have a

flat bottom so you cannot place any blocks below them. The general form of a

Cap Block is shown on the right:

In addition to the standard Scratch/mBlock 5 blocks listed above, there is also the

facility to create very useful ‘My Blocks’. These are user-defined ‘custom’ blocks, a

way of compressing a script containing a sequence of blocks into a single stack block

that you name yourself. A ‘My Blocks’ hat block is shown here on the right:

You can perhaps perceive a ‘My Blocks’ block as an alternative to a hat block since they are always

needed to start any script sequence of programming blocks.

N.B. They are only visible in (and work in) the sprite (or the device) in which they are created!

It's considered best practice not to have repeated chunks of code in scripts, so using a self-defined ‘My

Blocks’ block only need a single custom stack block to call any code created under it. These blocks can

be used in scripts as many times as you like and save much duplication of block sequences since you

only need to use the name of the custom block every time you want to call the common code; this will

reduce the total number of blocks (and therefore the parsing time) in your scripts.

mBlock 5 needs to parse the entire set of blocks in your ‘Scripts’ area; so breaking up one big script into

smaller scripts is generally a good idea as it reduces the parsing time making your code run a little faster

and smoother. As well as saving time and saving space, using well-named custom stack blocks can also

provide much clarity in a complex programming sequence making your programmes easier to read and

to maintain - so do develop the habit of making your own custom blocks.

Basic Programming Principles

When you know what you are doing (and have a real requirement to do so) you can upload the code

from mBlock 5 via its integrated compiler into the flash memory of your robotic device (mBot) so that it

can run repeatedly and totally independent of your PC in ‘Offline mode’.

Uploaded code is actually more efficient and runs more smoothly when all your instructions are running

totally inside mBot’s brain since the mBlock 5 application is really a code generator. If you do upload

your scripts into mBot it compiles your programme into a hexadecimal source file (that conveys binary

information in ASCII text form (this is a method commonly used for programming microcontrollers,

EPROMs, and other logic devices). Conversely, with the more usual ‘Online mode’ control of mBot

you might experience marginal lag times because of the emulation happening to bridge your code with

mBots hardware. However, for most of the time, there is no need go ‘Offline’ at all - it is rather boring

and somewhat tedious to upload your code into mBot which is then stuck with just that set of

instructions until the equally tedious ‘Upgrade Firmware’ option is invoked. You may also find it worth

it to use ‘Reset Default Program’ to clear out mBots memory too. So do get into the habit of always

working in ‘Online mode’, allowing mBot to provide real-time development feedback on the ‘Stage

using ‘Monitors’, ‘Variables’ and other graphical output from your projects (see Chapter 14 for more on

graphics).

mBot and Me
a Beginner’s Guide

Page 38 - mBot and Me - a Beginner’s Guide

mBlock 5 lends itself to simple procedural coding since there are no complex functions, no multi-

threading, no fancy data structures and only the simplest manipulation of variables. Ideally, you just

work out a decision-making algorithm detailing the Input / Process / Output of what you want to do; and

then write the script - simple!

N.B. An algorithm is a sequence of step-by-step instructions or a set of rules that are followed in the

right order to complete a task correctly.

An algorithm is a procedure that tells your computer precisely what to do (and in what order) to solve a

problem or reach a goal. The task to be solved by an algorithm can be anything, so long as you can give

clear instructions for it and it can be written as a list of steps just using text or mostly, pictorially (a

flowchart) with shapes and arrows showing input, processing and output.

Shown on the left as an

example of this is a complex

decision-making algorithm

that I created about twenty

years ago showing the

sequence required to operate a

Lego model using the ‘Logo’

programming language.

It’s a good habit to always try

to sketch out a quick

algorithm like this to work out

the steps you need to achieve a

programming goal and you

will soon work out a way to

build scripts that do exactly

what you want.

As in all things, keep your

programming steps simple and

name everything that you add

into a programme yourself

(Variables, Lists or Blocks)

using meaningfully descriptive

names. Such names should be

immediately understandable as

part of a programme sequence.

At its simplest level, an

mBlock 5 script can be a

linear sequence of simple

stack blocks with a ‘Hat’

block at the top to enable the

sequence to be activated (see

the diagram on the next page).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 39

Each block in a script carries-out its designated command in turn in the order in which the blocks are

positioned, from top-to-bottom, and then the sequence stops.

It is fairly easy to understand and modify what is happening in a

linear block sequence; but it is a ‘one-hit’ action, and since there

is no decision making, it needs to be activated by you

if you want the script to run again.

The next level of programming, moving on from the simple

linear sequence shown on the right is to use looping (decision

making) sequences. You will use looping sequences for much of

your programming.

A good example of needing a looping script is for polling a

sensor such as mBot’s ultrasonic sensor ‘ears’ to display its

distance from objects; and then storing the feedback in a user-

defined ‘Variable’ called ‘Distance’. If you make a linear block

script to show feedback from the sensor by putting it into a

named variable then it’s monitor window can be displayed on

the ‘Stage’- but it will only show a number which was the distance measured by the sensor when it was

polled by running the script; and the number will not change in real-time.

However, if the same Reporter block (nested inside a Stack block) is put inside a ‘Forever’ loop, then

the number on the displayed variable will constantly change as soon as the script is run; this is what is

known as ‘real-time’ feedback! - see the screenshot of both of these scripts below:

In mBlock 5, looping blocks are ‘Control’ blocks which hold other blocks inside them. The most

common of these is ‘Forever’ which is a loop block (shown in the screenshot above) that repeats forever

in an infinite loop; and there are surprisingly, a lot of cases when an infinite loop is needed. Using a

‘Repeat’ block instead will loop a given amount of times before allowing the script to continue.

mBot and Me
a Beginner’s Guide

Page 40 - mBot and Me - a Beginner’s Guide

If you put one ‘Repeat’ block inside another (which is allowed) this is also called ‘nesting’. The total

repetitions will be the product of the two nested ‘Repeat’ block inputs.

The ‘Repeat Until’ block is very similar and will loop until the specified Boolean statement is true, in

which case the code beneath the block (if any) will execute. Note that this loop is in similar nature to a

‘While’ loop in some other programming languages.

Particularly useful and probably the most powerful of the looping blocks are the ones that make

decisions after checking specified conditions such as ‘If…Then’ and ‘If…Then…Else’; both of these

conditions loop until the specified condition is true and then exit the loop.

The example described on the previous page, used a user-defined

‘Variable’ which I named ‘Distance’. In programming, a variable is

something created to hold a value, much like x and y are used as

variables in algebra. In mBlock 5, variables are represented by

‘Reporter’ blocks shaped like long rectangles with semi-circular ends

and when created must be, uniquely labelled by you - note the uses of

the ‘Distance’ variable in the diagram on the right.

If you define a variable, then several more stack blocks appear under

the heading ‘Variables’ in the block categories section of the ‘Blocks’

area. They are orange in colour and as you create more variables then

their names are automatically added to the drop-down menu lists in

each of the blocks. The current choice is shown as ‘Distance’ in all the

blocks shown above right.

Variables, generally speaking, can be local or global. In mBlock, a local variable can be used by just

one sprite; however, a global variable (the default setting) can be used by all sprites.

One of the great strengths of mBlock is the ability (and a requirement in many cases) to ‘dock’ or ‘nest’

programming blocks inside other blocks. The example on the previous page using the variable

‘Distance’ allowed a choice from four additional orange stack blocks. The first block in this list; shown

slightly more clearly above is ‘set (variable name) ‘Distance’ to ‘0’.

I used this stack block to create both of the single block scripts in the example shown on the previous

page. Note that the ‘0’ part of this can be changed to anything that you can type or that can be nested

inside the window that contains ‘0’.

In this case, the ‘Reporter’ block for the Ultrasonic Sensor was dragged over the little window until it

‘nested’ inside it (be aware that the rim of the window illuminates with a white rim when another block

is near enough to be nested inside it) - note too that the ‘Set (Variable Name) to…’ block also

dynamically expands automatically to allow any nested inclusion to fit inside it. Blocks grow clearly

wider when something is nested inside them, but blocks grow a little taller (or fatter) too with each

subsequent nesting.

With a little practice, nesting mathematical operators and reporter blocks to calculate meaningful output

becomes very straightforward. As an engineer, I like to have distance readings in millimetres (not the

default measurement, centimetres!).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 41

To do this (as shown below) it needs a slightly more complex ‘nested’ variant of the same single stack

block. First, the sequence is described as a simple algorithm:

Next, here are the blocks required to achieve this:

Build the nested block sequence in the following order – note that the window in the ‘round’ operators

block is illuminated to show that the ‘nest’ can be made (and note too how the operators block stretches

to accept the ‘reporter’ block):

Add the newly nested ‘round’ block into the left-hand window of the ‘multiplication’ operators block

and type ‘10’ into the right-hand window as shown below:

Finally, add this nest of the three component parts to the round-ended right-hand window of the Set

‘Distance’ Variable stack block to complete the block sequence required to allow ‘Distance’ to report

distances in whole millimetres:

As mentioned earlier, it's considered best practice not to have repeated chunks of code in your scripts, so

you need to develop the technique of making your own ‘user-defined’ custom blocks which you create

by clicking the heading ‘My Blocks’ at the top of the block categories section of the ‘Blocks’ list area.

These blocks are SO useful!

Named custom blocks that you create here are red in colour and greatly help with the recurring use of

script sequences in a complicated programme since you only need to use the name of the custom block

every time you want to call that piece of code.

After defining a block and creating a script under the (unique to ‘My Blocks’) red coloured hat block

shown on the right of the diagram at the top of the next page, a new stack block with the name you gave

to the hat block is available and visible in the ‘My Blocks’ window enabling you it to add to any other

script sequences as many times as you like - one block such as this can call the whole script stored under

its defined hat block; saving space and providing much clarity in a complex programming sequence.

Set ‘Distance’

Variable
Read Sensor

Round reading to

nearest Integer
Multiply by 10

mBot and Me
a Beginner’s Guide

Page 42 - mBot and Me - a Beginner’s Guide

A Little More Detail About Variables

It is helpful perhaps to consider variables as being containers that hold information; with their sole

purpose being to label and store data in memory which can then be used throughout a programme.

But although variables holding ‘Device’ data can be seen on stage output monitors, any scripts created

on the ‘Sprites’ tab can’t actively use any of this data in their programmes without using the ‘transfer-

data-on-demand-by-message’ broadcasting trick described in Chapter 13 (on pages 77 to 79).

In programming, a variable is a value that can change depending on conditions or on information passed

to the programme. Storing bits of data is crucial to the majority of programming scripts. In mBlock 5

data can be held in either variables or lists and either of these can be used whenever alphanumeric or

boolean values need to be stored and then referenced and manipulated in a script.

The naming of variables is regarded as one of the most difficult tasks in computer programming and you

need to develop a method for labelling data with a descriptive name so that your programmes can always

be understood clearly.

When you assign names to variables, try to make sure that the names are accurately descriptive and

sensibly logical. They should be understandable to either someone else or indeed yourself when you

return to a programme that you may have scripted months or even years earlier.

Creating variables in mBlock 5 is not difficult - in fact it is a fairly simple but marginally tedious task (if

you do need to create many of them), so having a set of useful and logically named variables ready-

made in a setup programme is a good idea.

In addition to creating useful graphics libraries and having them pre-loaded into my ‘mBot Setup Page’

file (previously mentioned on page 21) I have also experimented by added to it my most frequently used

variables, especially those which are needed to enable any of my installed library graphics to be

programmed on mBlock’s stage.

A list of these variables is shown on the next page. Any project based on a set-up file such as this can

contain all of these (even if they are not being used) and it is worth noting that both the graphics and the

variables pre-loaded into a file such as this are much quicker to delete if they are not needed in a project

than they taken to create them! HOWEVER, I have reverted to no longer having any pre-loaded

variables in my setup file.

Store any script sequence

you like under here.

Add this user-defined custom block to

a script and it will run any stored script

defined in the block on the right.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 43

Why have I inserted an underscore (_) in these Variable Names?

When creating any project that is likely to be uploaded to Arduino, it needs meaningful

names throughout and especially for variable names, broadcasts and self-defined block

functions.

These should ideally be just one descriptive word or one continuous set of characters

e.g. (using_an_underscore_to_simulate_a_space).

However, if your mBlock projects are not ever likely to be uploaded to Arduino, then

spaces are OK and continuous characters (although a good habit to adopt) are not

important.

About Lists

mBlock’s Lists (called arrays in other programming languages) are a way of storing

multiple pieces of information at once.

A ‘List’ can store and hold data that can be retrieved, added to or acted upon by other

scripts.

A ‘List’ can also be defined as a variable containing multiple other variables. Data

stored in lists in mBlock 5 can be usefully exported as a text file and text files can just

as easily be imported to populate an mBlock 5 list.

Lists are in effect, a simple vertical lookup table which consist of two vertical columns

the first containing ascending numbers which are paired with a second column

containing alphanumeric data; each data item capable of being retrieved by calling its

paired number. When you add a new data line, then a new pairing number is auto-created.

This example uses a list to

store the data required for

a very simple ‘Rock,

Paper, Scissors’ game.

You can see from the short script above how a randomly

generated number can be used to look-up items stored

in the list shown on the right to enable mBlock to

return a text response every time Emma pressed the

‘Space’ bar on her keyboard with one hand whilst

making her own hand gesture with the other hand at

the same time.

This was fun to do, and we made, as you will see later on, many more

sophisticated variants of this game.

mBot and Me
a Beginner’s Guide

Page 44 - mBot and Me - a Beginner’s Guide

Chapter 10 - About mBlock 5 - in more Detail

It is important to grasp at this stage, the concept of mBlock 5 having in reality two different Scratch

programming sections to use (with mostly different blocks in each of them). Once you understand this

then it is easy to see where you are going to create ‘Device’ scripts that control mBot (which you will

enevitably start-off doing initially anyway) and then eventually tackling rather more complex ‘Sprite’

programming scripts that can be used to animate useful graphics.

All about mBlock 5’s Default Set of ‘Device’ Programming Blocks for mBot

You do need to understand that you can only programme your chosen robotic device (mBot) when

the ‘Devices’ tab is selected and that initially, you only have access to the default set of robotics blocks

available in the blocks area. Slightly more complex programming however requires more blocks than

these to create control scripts and these are added as ‘Extensions’. Robotics extension packs are only

available to ‘Devices’.

Unlike all previous versions of mBlock, ‘Sprites’ no longer support robotics block programming and the

extensions packs of robotics blocks cannot be added to ‘Sprites’ - but more on extensions later. It is

important to realise too that when you switch to the ‘Sprites’ tab, the categories in the ‘Blocks’ area

change completely to show a totally different set of (non-robotics) programming blocks. As

mentioned earlier (on page 18) the ‘Blocks’ area has a set of coloured category buttons where you can

choose from sets of programming blocks that you need to build control scripts. There are nine

categories of these default blocks specifically for the mBot device and when you click on any of these

buttons then the available programming blocks in that category will be visible (short blocks anyway) in

the sub-section immediately to the right. Clicking anywhere on this sub-section panel allows longer

blocks to flow out over the ‘Scripts’ area to show their full content.

Although the block categories remain the same, or very similar, when you change devices, they do vary

for each robotic device depending upon the capabilities of each. ‘Codey Rocket’ has, for instance,

eleven categories of robotics blocks to access whilst ‘HaloCode’ & ‘Ultimate2’ robot have nine and

‘mBot Ranger’ only eight.

The first four of mBot’s block categories are ‘Show’, ‘LightSound, ‘Action’,

and ‘Sensing’ and all of the blocks in each of these have a device image at

the left hand end of the block (a lovely new mBlock 5 design feature). In the

image on the left you can clearly see that it’s an mBot-badged block and

coloured blue indicating that it’s from the ‘Action’ block category.

The first category of these mBot-badged blocks is ‘Show’ and although it is the first category group, it

has little to do with initial mBot programming since these eight stack blocks are all for creating scripts to

operate Makeblock’s add-on component, the ‘Me LED Matrix Panel’ (known in earlier versions as

‘Face’). This is an 8 x 16 matrix of little LED lights (more about this in Appendix 1 on page 184) - it is

a very useful output component, but not part of the basic mBot robot! I suspect that the ‘Show’ category

comes first in the blocks categories list to maintain compatibility with ‘Codey’ categories since ‘Codey’

has an inbuilt LED display; but if you want LED matrix output from mBot, then you have to buy it

separately (but it is worth it!). The ‘Show’ blocks are shown at the top of the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 45

The second button in mBot’s ‘Blocks’ categories list accesses the ‘LightSound’ blocks. The five ‘stack’

blocks in this category are itemised below:

With these blocks you can write scripts to control very simple output from mBot using the coloured

LEDs and the sound generator buzzer on the mBot’s mCore board.

The third button in mBot’s categories list accesses the ‘Action’ blocks. The seven ‘stack’ blocks in this

category (shown below) allow you to write scripts to control the two electric motors that power mBot.

The fourth button in mBot’s categories list accesses the ‘Sensing’ blocks. These blocks are different in

appearance to those in the previous categories shown above. There are ten blocks in this category which

are shown below:

mBot and Me
a Beginner’s Guide

Page 46 - mBot and Me - a Beginner’s Guide

Out of the ten ‘Sensing’ blocks, there are only two ‘stack’ blocks, the remainder being ‘reporter’ or

‘boolean’ blocks. Four of the five ‘reporter’ blocks have a check-box, which if ticked, will show the

reported result (feedback from that reporter) on mBlock’s stage in the same way that ‘Variables’ can.

The final three blocks in this category are ‘boolean’ blocks shaped to fit into matching hexagonal holes

in ‘control’ or ‘operator’ blocks to enable decision making within that block. Below the first four mBot

block categories described here and on the previous page are three more categories which do not carry

the ‘mBot specific’ badge described earlier.

These categories are the ‘Events’, ‘Control’ and ‘Operators’ blocks which can be considered as

‘general-purpose’ programming blocks (all very similar to their Scratch 3 counterparts). Blocks in the

‘Events’ category comprise the five ‘hat’ blocks and the two ‘stack’ blocks which are shown below.

Crucially, there is no longer (as

there was in mBlock 3) a ‘when

key released’ hat block in this

category; there is now only a

‘when key () pressed’ hat block.

There is not a ‘when key

released’ hat block in Scratch 3.0

either.

Perhaps this is where this

omission originates?

The ‘when key pressed’ hat block is pointless on its own since it performs in exactly the same way as the

more usual ‘when green flag clicked’ hat block - namely starting a script action with no way of stopping

it without clicking the ‘stop’ button below the stage or clicking the same ‘hat’ block again.

The ‘when () key pressed’ hat block still provides a useful way of running a script by pressing a

designated key on your keyboard; but since there is no ‘when key released’ hat block you can no longer

hold down a key (i.e. ‘the space bar’) to run a script and then exit the script as soon as you release

the key (as you could in mBlock 3).

This key pressed / key released combination was, in the past, important for simple robotics control - a

serious omission error here by the MIT Scratch team surely?

The eight blocks in the ‘Control’ category are identical to their Scratch counterparts. The three ‘stack’

blocks and five ‘C’ blocks in this category are shown below:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 47

There are eleven ‘reporter’ blocks and seven ‘boolean’ blocks in the ‘Operators’ category, and these are

very similar to their Scratch counterparts too. These blocks are shown below:

The final two mBot programming block categories are ‘Variables’ and ‘My Blocks’. Neither of these

categories contain any blocks on start-up because you have to create your own block as you need them.

About the Robotics ‘Device’ Programming Extensions Blocks for mBot

Pressing the (+) icon at the bottom of the ‘Blocks’ panel (beneath the coloured block category buttons)

opens the ‘Extensions Centre’. This window shows totally different contents depending upon

whether you have the ‘Devices’ tab active or on the ‘Sprites’ tab active.

In addition to the default robotics blocks for programming devices listed in the last two pages, there are

twelve extensions the ‘Extensions Centre’ when it is opened from the ‘Devices’ tab. You can however

only see eight and it’s not very clear that the window needs to be scrolled to see the remaining four.

Four of them: ‘Light Sound’, ‘Servo’, ‘Sensing Gizmos’ and ‘Gadgets’ contain between them just 11

different robotics blocks (with some rather confusingly being repeated in these extensions three times!).

However, these 11 blocks plus another 26 blocks (making 37 different blocks in total) are all contained

in just one extension, the ‘Maker's Platform’ extension. This is almost certainly the only extension that

you ever need to load for the majority of your projects. So why ever bother loading the other four listed

above? If you do ever have the need to load these then it is worth noting that the ‘Light Sound’

extension has robotics programming blocks for LED control and light and sound sensor feedback.

The ‘Servo Pack’ also has the same blocks for LED control in addition to those for controlling servo

motors. The ‘Sensing Gizmos’ extension has blocks for basic electronics work inc. fan control and

sound and temperature sensor feedback whilst the ‘Gadgets Pack’ extension also has the blocks for LED

control and for controlling servo motors as well as limit-switch control and digital display output.

I’m not too sure yet where I stand on the usefulness of ‘Extensions’ - either for the ‘Devices’ tab or

for the ‘Sprites’ tab especially since the remaining seven extensions for the ‘Devices’ tab are (for a

variety of reasons) of very limited use.

I’m not sure if the ‘Data Chart’ extension is of much value at all - it links to ‘Google sheets’ but it’s

only available if you are using the mBlock 5 web browser version. The list of blocks in this extension

appear to be very limited in what they can load or edit. The ‘Upload Mode Broadcast’ extension

enables a device to interact with a sprite when it is used offline - occasionally useful, but generally a

very rare occurrence!

mBot and Me
a Beginner’s Guide

Page 48 - mBot and Me - a Beginner’s Guide

The ‘Bluetooth Controller’ extension enables the connection to a hand-held games type controller via

Bluetooth. This might be of value to enable direct control of mBot if you already have one, but you can

do that already with the little IR controller supplied with mBot. There are just two blocks in this

extension, and they are greyed-out (dimmed) until a device is connected .

The next three extensions require you to spend money!

Specific Makeblock Me module boards (rather than the more commonly available add-on packs) are not

an easy thing to source in the UK and at an average cost of £15 to £20, plus considerable shipping costs

are rather expensive to source.

The ‘Audio Player’ extension is for advanced recording, manipulation & playback of external sound

files. BUT this needs a specific Me audio playback module if you want to play or record music or to add

speech recognition to a project.

The ‘RGB Line Follower’ extension like the ‘Audio Player’ above needs the purchase of another specific

Me module. It can be used for advanced robotic line-following, allowing mBot to be programmed to

follow different coloured tracks. The ‘Color Sensor’ extension (like both the ‘Audio Player’ and the

‘RGB Line Follower’ also needs the purchase of a specific Me module which is capable of determining

between six different colours.

I’m not sure what the final extension is or does! - Its not currently activated so you can’t open it and it

might be linked to an Internet Ordering Platform?

I need and therefore regularly use the aforementioned ‘Maker's Platform’ extension and I always load it

into the edit page of all of my projects since it contains many of the useful blocks which were always

present in the good old mBlock 3 ‘Robots’ blocks category.

Once loaded into (and used in) a project, any extension such as this one is remembered and will be

visible in the ‘Devices’ blocks categories (or ‘Sprites’ blocks categories, if appropriate) when that

project is reopened.

I use the ‘Maker's Platform’ extension specifically for its DC motor control blocks which are much

more precise for moving mBot compared to the rather simplistic, ’Move’ blocks in the ‘Action’ category

of mBlock 5’s default sets of blocks.

These DC motor control blocks enable you to run one motor alone or independent of the other and

each can be set to run clockwise or anticlockwise - confusingly the descriptors on these control blocks

refer to DC motors connected to either port1 or port2 - this does not however mean the main connection

ports on the mCore board (it really means the M1 & M2 motor connections)!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 49

Out of the rather long (too long in fact) list of 34 blocks in the ‘Maker's Platform’ extension the

following five stack blocks, four reporter blocks and a single boolean block are probably of the most

use:

These are followed in usefulness by the following (although these blocks all do exist in the ‘Show’

category) - and are only of use if you buy the LED panel add-on component:

The remaining nineteen blocks in this extension are really only of use if you have access to specific

control / feedback items which are (as mentioned on the previous page) expensive add-ons not

commonly available:

N.B. Rather confusingly, the ‘Light Sound’ ‘Devices’ tab extension mentioned on page 47 has the same

name as the second of the blocks categories on the ’Devices’ tab which is also called ‘LightSound’.

mBot and Me
a Beginner’s Guide

Page 50 - mBot and Me - a Beginner’s Guide

About the Stage ‘Sprites’ Programming Extensions Blocks for mBot

Fourteen individual sets of robotics blocks (totally different to those discussed on previous pages) are

available for mBot in the 'Extension center' when it is opened from the ‘Sprites’ tab and once again I’m

not sure about the real value of very many of these. However, that said, this software is totally free to

use and Makeblock have made a very good and nobly intentioned attempt at providing the tools to

enable kids to get to grips with the basic concepts of A.I and Machine Learning.

These individual ‘Extension’ groups are as follows:

The ‘Cognitive Services’ extension has Artificial Intelligence (A.I.) blocks with an integral on-screen

‘Recognition Window’ showing what your web-cam can see. The blocks work very well in recognising

spoken and written words (both printed & hand-written). There are also blocks which purport to

recognise the age and the emotional expressions of an individual viewed by the web-cam - I’m not too

sure about the value of these last two but experimenting with simple A.I. feedback is quite good for kids.

Technically (and rather grandly), ‘Cognitive’ refers to attention span, memory and reasoning; along with

other actions of the brain that are considered to be complex mental processes!

The ‘Teachable Machine’ extension has initially just one block which accesses a ‘Training Model’

window which enables your computer to supposedly learn things by establishing artificial neural

networks that resemble human brain processes and which can train your sprites to ‘learn’ things - this is

called ‘Machine Learning’. This also has an integral on-screen ‘Recognition Window’ showing what

your web-cam can see. This extension is rather complex to use, and the model relies on you creating

‘categories’ (rather like variables) which, when the model is in use, will become available as drop-down

choices in two of the three new blocks added to the extension. These ‘categories’ are ‘trained’ on what

the web-cam can see, which seems to be rather similar to the A.I. emotions feedback.in the ‘Cognitive

Services’ extension; but here, it I doesn’t appear to work half so well.

The ‘Data Chart’ extension provides a very simple way of building a data table, a bar or line chart on

screen which can be downloaded as a .png file; but why? - This seems to serves no really useful purpose

unless you want to use it to capture the data stored in variable reporter blocks in a graphical way.

The ‘User Cloud Message’ extension can be used to sync data from your mBlock account across

different devices and projects - this is probably useful when you need to upload a programme to a device

like ‘HaloCode’. The ‘Pen’ extension is useful since it allows sprites to draw lines on the stage display

screen. The ‘Music’ extension has its uses too if you want mBot to produce sounds emulating a variety

of instruments (and this now works so much better than the ‘Sound’ blocks group did in mBlock 3).

The ‘Climate Data’ extension does have some value too and has robotics programming blocks for

accessing and manipulating real-time climate data from most towns in countries across the world. The

output from these blocks is rather sparse and ideally needs to be concatenated with descriptive text either

side of the output data; which leads to some very long nested block sequences (but if these are stored as

a named variable then the data string can then be called by just the variable name).

The ‘Upload Mode Broadcast’ extension is exactly the same extension as is found in the ‘Device

Extensions Centre’. This also enables a device to interact with a sprite when it is used offline - and as

mentioned before, useful - but a very rare occurrence!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 51

The ‘Google Sheets’ extension can connect mBlock 5 to a Google spreadsheet of data, but only if the

sheet has been ‘Shared’ and anyone with the link allowed to edit the file. You need to have copied the

link (URL) from the sheet you want to access to the clipboard so that you can paste it into mBlock 5’s

‘connect to shared sheet’ block.

There are only two additional blocks in this extension - one to input data into a named cell, and one to

read data from a named cell. I suppose that you might want to use this as a way of capturing or inputting

data stored in variable reporter blocks; but this seems to be a tedious and possibly pointless undertaking,

so I’ve not tried that yet!

N.B. In a short test of this extension, it took about 8 seconds to poll a Google sheet, edit it and send

feedback to the mBlock 5 stage; and all without the sheet being visibly opened (but this was with me

already signed-in to Google!).

The ‘Video Sensing’ extension senses motion with an attached video camera. mBlock 5 seems to

recognise any web-cam attached to a PC. It does work OK, but it seems to be of rather limited value.

The ‘Text to Speech’ extension works well. It makes your projects talk and you can choose from a range

of voices. I’m not sure as to its real value though, since this very much depends on the nature of the

project in hand; and to work well this needs the words to be written phonetically (so that they sound

right) and not as conventionally spelt.

I tested this by using it to speak a sequence of the ‘Climate Data’ extension variables mentioned on the

previous page. Some climate data output required repeated tweaking before it sounded OK.

The ‘Translate’ extension works very well. It will translate text into many languages. I tested this by

using “The pen of my aunt is in the bureau of my uncle” which it immediately returned in French as

“La plume de ma tante est dans le bureau de mon oncle”.

The ‘Makey Makey’ extension (make-key, get-it!) literally allows you to make a simple key code to

operate a hat block. Fun for kids, this is a ‘hat’ block that requires a sequence of key presses to activate

the script to which it is attached (e.g. ‘up, right, down, left’) a fun idea, but essentially useless - why use

it when you can just click the ‘hat’ block to activate the script, unless you can cunningly hide the ‘Makey

Makey’ script - perhaps hidden behind a large floating comments call-out box.

The ‘AI Service’ extension (from Baidu, Inc.) was visible in the extensions centre earlier in the year.

Now, at the time of writing, this it has only just been activated for use in beta format - it says that it is

currently only available in China (& much of its feedback only appears in Chinese characters!). I

haven’t therefore experiment with it yet, but it looks both promising and exciting. Opening this

extension actually makes five new categories available: ‘Speech Recognition’, ‘Text Recognition’,

‘Image Recognition’, ‘Human Body Recognition’ and ‘Natural Language Processing’. - Wow!

N.B. Beware, the only way that any ‘Extensions’ that you have added to the 'Blocks' categories panel can

be removed is by reopening the 'Extension center' and then clicking the ‘Delete’ button below each

individual ‘Extension’ pack. If you wish to clean up mBlock 5’s available block categories panel by

deleting more extensions, it becomes a rather tedious task to reopen the 'Extension center' each time

since it closes after each deletion.

mBot and Me
a Beginner’s Guide

Page 52 - mBot and Me - a Beginner’s Guide

Chapter 11 - Programming with mBlock 5

Despite what I have said earlier about programming using the ‘Devices’ tab blocks to control mBot, it’s

no bad thing to do a little programming using the ‘Sprites’ tab first. This is actually not a bad way to

experiment with mBlock 5 - so switch from the ‘Devices’ tab to the ‘Sprites’ tab.

The principles are identical, so you can try whatever you want here, and since you are not

communicating with mBot, you can’t wreck anything, and you only need to save these project files if

you really want to.

My demonstration exercise shown below gets the default sprite ‘Panda’ to walk on to the screen and say

something. I used this exercise to encourage Emma to understand the programming techniques of

Scratch immediately after she had gone through the ‘Blockly’ based scripting exercises on her tablet.

The thought process (the basic algorithm) for this sequence is as follows:

Open mBlock and choose the ‘Sprites’ tab (note that the block categories and the blocks themselves

change when you switch tabs). Drag the required command blocks from the ‘Blocks’ area to the

‘Scripts’ area as shown in the diagram below and slot the blocks together in the order shown on the right

of the diagram:

If you make a mistake, you can click the right button of your mouse and choose ‘delete’ from the drop

down menu to zap an errant block.

Wait a

bit

Move Sprite to

‘Stage Left’

Move Sprite a

bit to the right

Change the

Sprite image

Say

Hello

Move Sprite a

bit to the right

Change the

Sprite image

Repeat several times

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 53

You can also choose ‘duplicate’ from the right-click menu too, so try duplicating the purple ‘next

costume’ block after you have dragged the first one across (because you need two of these) - leave the

duplicate at the bottom of the ‘Script Area’ until you need to drag it into place - duplicating blocks or

groups of blocks is very a useful trick to learn. You can either click the green flag on the top of the

screen (below the panda) to let mBlock run your programme or you can click the ‘Hat’ block at the top

of your script. Clicking here is OK - but it is essentially a bad habit - which sadly I still mostly do!

You will also see the green flag below the stage light up when it is clicked, and the red stop button dim -

note too that the red stop button lights up again when the code completes and the programme stops.

Try adding a second sprite - anything will do. If you click on the new sprite, you will see no script in the

‘Scripts’ area but if you click back on the Panda sprite you will see your block script once again. This

little experiment will show you that scripts are indeed attached to individual sprites. You can have many

sprites in a project, and you can have many scripts (or none at all) attached to a sprite.

Try clicking on the ‘Hat’ block at the top of your sequence of blocks, hold down your mouse key and

drag your blocks left from the scripts area towards the two sprite icons showing in the sprites pane on

the left of the screen. When your cursor is over your newest sprite, the sprite icon will gain a blue

background and ‘wobble’ a bit from side to side, let go of the mouse button and you will see that you

have duplicated your set of scripting blocks and now both sprites have the same programme attached to

them - try moving your new sprite by running the programme - you could also try modifying it so that it

is slightly different to the script attached to ‘Panda’.

You have just learned how to duplicate scripts; and moving scripts this way is a very a useful trick to

learn.

Programming your mBot robot for the first time

With a new (out-of-the-box) mBot, you have the following DEVICE programming options:

You can write scripts to control each of mBots outputs:

(i) the on-board Buzzer.

(ii) the on-board LEDs.

(iii) Motor 1 & Motor 2 (the drive wheels).

You can also write scripts to access each of mBots inputs:

(i) the Light-Sensor.

(ii) the Distance Sensor.

(iii) the Line-Tracker.

(iv) the IR Remote.

(v) the on-board Button.

(vi) the Timer.

mBot and Me
a Beginner’s Guide

Page 54 - mBot and Me - a Beginner’s Guide

You can approach your programming journey any way that you like, but it’s a good idea to start your

mBot scripting adventure with some simple linear sequence scripts programming mBots output devices

(using no loops or control structures). I got Emma to create scripts to play a sequence of sounds with the

buzzer and flash the LEDs. The simple exercise shown on the next page is based on what she did.

Programming using the ‘Devices’ tab of mBlock 5 and using the ‘Scripts’ area on the right side of the

screen is easy. The code is ‘live’ and it can communicate with mBot as soon as it is created. You don’t

need to upload anything into mBot, which if it is connected to your computer by Serial cable or by

Bluetooth or by Wireless will follow the instructions in your programme as soon as you tell it to run

using the ‘Green-Flag’ (‘start’) button.

You can and should however ‘Save’ your programmes frequently so that you can reload them back in

to mBlock 5 at any time (so you don’t have to create them again). See Chapter 17 re. saving your

programmes (pages 152 and 153).

Here are some suggested programming experiments to explore each of mBot’s input and output devices:

1. Using output from mBots LEDs & Buzzer (light & sound).

2. Using the keyboard to control mBots movements & programming the IR Remote.

3. Using input feedback (distance), (line following) & (light).

4. Using feedback from logic & maths functions.

These will all be demonstrated in subsequent pages:

Simple linear scripts to control mBots LEDs & the Buzzer (light & sound):

In this exercise you need to experiment with the following two blocks.

The one that controls mBots on-board LED lights:

And the one that enables mBots on-board Buzzer to play sounds:

To turn ON or OFF mBot’s

LEDs, you click on the down-

arrow in the blocks left-most

window, the one which defaults

to ‘all’.

As you can see here, it gives

you three choices from a drop-

down menu and instead of ‘all’

(both LEDs) you can select to

control just the ‘left’ LED or the

‘right’ LED.

Type any number between 0 & 255).

Select one choice from

drop-down list.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 55

The other three ‘bubble’ windows in the block shown at the bottom of the previous page require three

typed inputs to control the ‘colour-mix’ of the intensity of the light components (red, green and blue).

You can set any number in these ‘bubble’

input windows between 0 = ‘Off’ and 255

= ‘Full-On’. If they are all set to zero (0,

0, 0), then the RGB LEDs are set to ‘Off’.

N.B. Be aware that many of mBlock 5’s

programming blocks allow this insertion of

your own data - but (as in the ‘all, ‘left,

‘right’ choices shown on the previous

page) you cannot override the un-editable

drop-down lists. Long lists like the tones

list in the ‘play note’ block usually have a

slider enabling fast scrolling through the

list.

Shown on the right is a fairly typical linear

scripting example - an experiment that you

can try very early on yourself using, for

the first time perhaps, the blocks from the

blocks area to control Light and Sound

output. You can make up and edit your

own version of this sequence very easily.

It is important to learn about (and be

confident with changing the data input

parts of blocks; either those that have a

‘menu’ (with a down arrow to select from

a list) or the little ‘bubble’ windows which

expect typed input.

About mBots Buzzer and Recorded Sound Files

Sadly, mBot does not have any capability, in its own right, to play recorded sound files. The only way

that mBot can generate sound output is by using the onboard piezo buzzer to play a specific tone.

Since I learned to programme Clive Sinclair’s ‘Spectrum’ in the early 1980’s, programming pitch

changes for mBots buzzer recently has given me a real sense of déjà vu! To operate the buzzer, you just

choose the note that you want in the block ‘play note’ - or you can, if you really want to (and know how

to) add numeric values of frequency and rhythm.

The ‘Audio Player’ extension in mBlock 5 can play audio files, but only through Makeblock’s own Me

Audio Player (an acousto-optic output device with a built-in voice decoding chip). Sadly, this seems

hard to source; and apart from being included in a newly released (and expensive) ‘Talkative Pet’ add-on

pack is not available as a stand-alone item in the UK.

https://www.makeblock.com/project_category/acousto-optic-output

mBot and Me
a Beginner’s Guide

Page 56 - mBot and Me - a Beginner’s Guide

Rather than specifying frequency it is usual to set notes with normal musical notation which you choose

from the first drop-down menu window of the ‘play note’ block. The notes are written as C, D, E, F, G,

A and B. followed by a number, 2 to 8, which specifies the number (in scientific pitch notation - low to

high) of the available octave that you wish to use (there are actually seven and a bit of these - the same

number of octaves as a standard piano).

N.B. Middle C is the fourth C key from the left on a standard 88-key piano keyboard. It designated C4

in scientific pitch notation (however in MIDI, Middle C is note number 60).

You can also establish the duration (beat or rhythm) of the note in the second ‘bubble’ window, but you

cannot programme sustained notes (the period of time during which the sound remains audible and

overlapping with other notes).

You just click in the ‘bubble’ window and type the duration of

the sound you require e.g. enter 1 and the beat will last for one

second.

Alternatively if you set the tone within this

block as a sound frequency you just type in

your own number (in Hz). The frequency of

the note C4 (middle C) is 261.625565 hertz. So, if you click in the note frequency window of this

scripting block (as shown above right) and type into it 261.6 you will get mBot to also generate (C4)

(middle C).

You need to be aware that if you write scripts to output sounds from mBot (such as playing a long note

or a short tune) then this will always stop the execution of further scripting code until the note or tune

completes. The mCore board will execute the task in a such a way that nothing else happens until it the

tone finishes playing, and this is known in computing as a ‘blocking task’ where your script is blocked

waiting for the task to complete. This will also disrupt any feedback polling loops in your scripts so if

you have, for example, programmed mBot to play a sequence of notes in response to being triggered by

a specific input, then mBot will not be able to look or ‘poll’ to see if a button has been pressed or what

the latest value returned from the line follower etc. may be until the ‘blocking task’ of sound generation

ends. A glitch like this may cause mBot to go out of control.

I’m not a musician, so I’ll leave this section here, but you might want to experiment more.

Emma liked the following ‘Two-Tone Horn’ sound effect, simple but fun - you may want to try it too:

https://en.wikipedia.org/wiki/Scientific_pitch_notation

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 57

Controlling mBot with Your Computer Keyboard:

To be able to use robotics programming blocks, you MUST be on the ‘Devices’ tab and here you will be

able to create a simple set of programmes in the ‘Scripts’ area that will allow you to control your robot

yourself for the first time. You only need to make one script to start with by using the ‘Events’ block

‘when (space) key’ pressed and then adding to it, the ‘Action’ block ‘move forward at (50)%’. Edit the

hat block by selecting the ‘up-arrow’ choice in its drop down list of options and then edit the stack block

bubble to set 40% power. Duplicate this script four more times and position them in the ‘Scripts area as

shown below:

Edit each script in turn until all five match the scripts above. The ‘Cap’ block ‘stop (all)’ is a ‘Control’

block. Remember as always to CONNECT mBot to mBlock 5. You will now find that you can use the

cursor keys on your keyboard to control mBot - but be prepared to hit the space bar to stop!

For the first time you can make mBot move or stop with a control programme that you have written.

Save this project into your ‘My Projects’ filing system.

For Info.: In mBlock 3 there used to be both the ‘when (space) key

pressed’ hat block and it’s opposite, a ‘when (space) key released’

hat block.

These were so good to use together in control script sequences like

the one that you have just created, since when a key was released it

could activate an action like ‘stop moving’. Sadly, this block has been omitted from the current versions

of both Scratch 3 and mBlock 5.

A rather more advanced version of your keyboard mBot controller is shown on the next page. You

might want to attempt this too. Don’t panic, it’s not that complex but will develop some further skills.

It essentially requires two things, a ‘Variable’ called ‘POWER’ needs to be created and the ‘Makers

Platform’ extension needs to be loaded so that you have access to the ‘DC motor’ blocks (as

demonstrated on the next page).

mBot and Me
a Beginner’s Guide

Page 58 - mBot and Me - a Beginner’s Guide

Click on the ‘Variables’ button in the block categories and then click on the ‘Make a Variable’ button.

A little window will open asking you to type in a ‘Variable’ name so type in ‘POWER’ and leave the

radio-button set to ‘For all sprites’ and then click the ‘OK’ button. In the ‘Variables’ menu, under the

‘Make a Variable’ button you will now see the name of your variable created as a ‘Reporter’ block

together with four more new blocks ‘set (variable name) to ()’, ‘change (variable name) by ()’, ‘show

variable (variable name)’ and ‘hide variable (variable name)’.

If you later make more variables, then they will also be shown in a vertical list under the ‘Make a

Variable’ button and their names can be chosen in the stack blocks described above by clicking on the

little ‘drop-down list’ arrow next to the existing variable name in the block. Remember to make sure

that you are on the ‘Devices’ tab and that you have added the ‘Makers Platform’ extension and then

create all of the scripts shown below:

You should be able to see how they work since they are very similar to the simple keyboard control

scripts that you have just experimented with and which are shown on the previous page. You can set the

speed for the ‘DC motor’ blocks by setting a new value in your ‘Green Flag’ initiated ‘POWER’

variable.

N.B. 50% is good, 35% is about the lowest that you can go without stalling and 100% is naturally the

fastest speed. You should also be able to understand the sequence of lights added to each controller

script. Note too that there is no block to turn LED lights off (but why not?) so to do this all input values

need to be set to set to zero (0, 0, 0) = ‘Off’.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 59

Creating a Control Programme for the Infra-Red Remote

You hardly need to make this script since your little IR remote already works

(unless you have uploaded something into mBot’s flash memory and no longer have

the out-of-the-box default functions loaded!). But it’s not a bad idea to go through

this short exercise to try to understand how keys on

the IR controller can be programmed to pass

commands - any commands to mBot.

The ’Devices’ script (shown on the left) looks

complex but it just needs to make four decisions -

which key has been pressed and what to do next

(and if it’s none of them then stop mBot moving).

There are three ‘if / then / else’ conditional

‘branching’ (decision) blocks nested inside each

other - just make the first one and then duplicate it

twice more, adding each duplicate block sequence

into the ‘else’ part of the one above, editing the

keypress directions as you do so. Since there is

now only the need for a final (fourth) decision to be

made then it does not need an ‘else’ decision; so

this time you can use the slightly simpler ‘if / then’

decision block.

At the bottom (but inside the opening forever loop)

is the final choice that needs to be made if none of

the conditions in the four individual decision making loops have been met - the

‘stop moving’ block. Press the ‘Green Flag’ button to activate the script. A

light press on one of the direction keys on the IR remote will pulse mBot in the

direction specified, whilst a long press will maintain continuous movement in

that direction. Releasing the key will stop mBot.

Try it - however, be aware that you can only programme these four direction keys when you have the

‘Devices’ tab selected; and only when you are in ‘Online’ mode.

Whilst experimenting with this, I particularly wanted to get the ‘COG’ key in the centre of the four

direction arrows (which incidentally in the ‘Boolean’ block menu is called ‘Setting’) to work. It looked

so useful as a potential ‘stop-all’ key, but full programming of the IR key controls only works if your

control scripts are uploaded into mBot’s flash memory to replace its default settings.

This is a little too advanced for now, but the programming codes shown below are those returned when

the corresponding buttons are pressed on the IR remote control but these key codes only work if any

script using them is uploaded into mBot and run in ‘Offline’ mode.

A B C D E F ˄ ˅ COG ˂ ˃ 0 1 2 3 4 5 6 7 8 9

69 70 71 68 67 13 64 25 21 7 9 22 12 24 94 8 28 90 66 82 74

mBot and Me
a Beginner’s Guide

Page 60 - mBot and Me - a Beginner’s Guide

About mBots senses, its Eyes & Ears; and using input feedback (distance), (line following) & (light):

mBot has sensors that it demonstrated for you when you operated it with the Infra-Red remote control

unit (which incidentally has a line-of-sight range of approximate 10M). The IR sensor on the front of

the mCore board is the first of mBot’s sensors receiving signals from the IR remote enabling you to

control mBot manually.

The second sensor, also on the mCore board, is a light sensor (which looks like a clear glass bulb

sticking straight up out of the board). It is also located at the front of mCore between the two LEDs

(note - if these LEDs are activated and set to their brightest white light then this may affect the readings

from the light sensor by a minimal increase of perhaps just one or two). The light sensor feedback

values are theoretically in the range of 0 to 1000, however I have seen it reporting values of 1004 or

1005.

Sensors are used to detect events or changes in the environment and send information to the electronic

components of other devices. While a programme is running it is often required to collect real-time

sensor values to help understand the environment e.g. light, sound and distance values.

Data values that may change during the execution of a programme are known as ‘Variables’, whilst data

values that stay the same during the execution of a programme are known as ‘Constants’. You need

something called a ‘Variable’ to store and display values from sensors. Giving variables sensible names

helps when polling information from them via your scripts (and your scripts become much more

understandable too).

If you create a script with a ‘Variable’ set inside a ‘Forever’ loop you can see real-time feedback values

from sensors such as the on-board light-sensor - try moving your hand over the top of the mCore board

to see the value fall. If the ambient light is not stable (e.g. from a fluorescent lamp source) you cannot

see the rapid change of sensor values very easily, so a ‘wait’ block can be added to a simple script to

reduce the speed of change in the variable’s value which you will then be able to see clearly.

I have not yet really found a use for light-sensor feedback although I guess that it could be used to turn

on LED lights as darkness falls (very much like the common occurrences of ‘security-lights’ around a

house or garden). A control programme can store variable values e.g. the range of expected data

(highest and lowest acceptable levels and what action to take if they're exceeded). A continuous

(forever) process of such data analysis is called a feedback cycle.

Sensors are used to measure physical quantities such as distance, temperature, light, pressure, sound, and

humidity. They send signals to the processor on the mCore board to interact with programmes that you

can write to make control decisions.

Here are some other real-world examples of sensors in use:

A security alarm system, which may have an infrared sensor which sends a signal when the beam is

broken. A heat-sensitive sensor in the corner of a room may detect the presence of a person (by using

mBot’s ultrasonic sensor you can try something similar to both of these). Temperature sensors can be

used to control the heating in a building. Magnetic sensors can be used to detect metal and can be

placed in roads to monitor traffic flow.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 61

Data transmitted from sensors (such as pressure, light, sound and temperature) is known as analogue

data. However, computers can only work with digital data. An interface or analogue to digital converter

(ADC) is needed to convert the analogue data from the sensors into digital data that the computer can

process and mBot has one of these too.

After the on-board sensors mentioned on the previous page (and more importantly perhaps) mBot has

two ‘add-on’ input sensor modules as part of its default components: one to sense distance using

ultrasonic feedback to let mBot avoid obstacles; and the other to sense the contrast between a light and a

dark surface for its line-following mode.

The Me Ultrasonic Sensor Module on the front of mBot is stylised to look

like two ‘eyes’ when it is mounted in the default position above the ‘mouth’

shape cut into the front of mBots chassis; however, these are really ‘ears’ not

‘eyes’ and they enable mBot to see and recognize objects, avoid obstacles,

measure distances, and detect movement using the same scientific principle

as bats. The ultrasonic sensor which has a max. range of 4M, measures

distance (in cm) by calculating the time it takes for a sound wave to hit an

object and come back - it’s an echo-sounder!

.’

The Me Line-Following Sensor Module is also mounted at the front of mBot

(below its ‘mouth’) and points downwards; there is quite a bit of science happening here for mBot to

follow variations in the contrast of reflected light.

This input sensor module contains both an

infrared emitting LED and an infrared

sensing LED and uses these to check the

contrast between a light and dark surface

and mBot comes with a figure-of-eight

paper track (for line-following purposes)

that you can use.. You can add some Me

Sensor Modules as needed for your own

projects by buying mBot add-on packs.

These are the available (mBot compatible) Makeblock Me Series Modules:

Me 4 Button

Me 7-Segment Display

Me Bluetooth

Me Buzzer

Me Compass

Me DC Motor

Me Flame Sensor

Me Gas Sensor

Me Gyro

Me Humiture Sensor

Me I2C Scan

Me Infrared Receiver

Me Joystick

Me Light Sensor

Me Limit Switch

Me Line Follower ***

Me PIR Motion Sensor

Me Potentiometer

Me RGB Led

Me RJ25 Adapter

Me Serial

Me Servo

Me Shutter

Me Sound Sensor

Me Stepper Motor

Me Temperature

Me TFT

Me Touch Sensor

Me Ultrasonic Sensor***

Me USB Host

Me Wi-Fi

*** the default components supplied with mBot

mBot and Me
a Beginner’s Guide

Page 62 - mBot and Me - a Beginner’s Guide

Simple use of the Ultrasonic Sensor

The aim of the simple exercise outlined below is to get mBot to move forwards and stop at a

predetermined fixed distance from an obstacle that it detects with its ultrasonic sensor and when / if the

obstacle is removed, it continues to run forwards. The ultrasonic sensor module mounted on the front of

mBots chassis has two protuding tubes that look a bit like ‘eyes’. One of these ‘eyes’ transmits a high

frequency wave that bounces off any intervening surface or object and the wave returns to be received

the other ‘eye’. This type of sensing is known as echo-location (so they are actually ‘ears’!). The sensor

is set by default to measure distances in centimetres.

To undertake this exercise, you first need to create a specifically

named variable, so click on the ‘Variables’ button in the block

categories and then click on the ‘Make a Variable’ button. A

little window will open asking you to type in a ‘Variable’ name so

type in ‘Distance’ and leave the radio-button set to ‘For all

sprites’ and then click the ‘OK’ button. See the illustration on the

right).

In the ‘Variables’ menu, under the ‘Make a Variable’ button you

will now see the name of your variable created as a ‘Reporter’

block together with four more new blocks ‘set (variable name) to ()’, ‘change (variable name) by ()’,

‘show variable (variable name)’ and ‘hide variable (variable name)’.

N.B. If you later make more variables, then they will also be shown in a vertical list

under the ‘Make a Variable’ button and their names can be chosen in the four stack

blocks described above by clicking on the little ‘drop-down list’ arrow as shown in

the script on the left.

Be aware that any Variables that you

create do not remain in mBlock or

transfer to other projects, so you must create fresh ones as

required by any

new script that

you write.

Once you have

created your

‘Distance’ variable, then the ‘set - ‘Distance’ to ()’ block

becomes available and you can begin to make the ‘Devices’

script shown in the diagram above.

By using the conditional ‘branching’ block ‘if / then / else’

from the ‘Control’ blocks group you can make your

programme branch to do either one thing or the other.

The logic of this sequence is fairly easy to follow without an

algorithm, but here on the right: I’ve shown it anyway.

Start

Move

Forwards

Read

‘Distance’

Stop
If ‘Distance’

is less than

10

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 63

If you click on the ‘Green Flag’ (or the ‘Hat’ block at the top of the script) mBot should run forward

until it is less than (or equal) to 10 centimetres away from an obstacle - try using your foot! If the

obstacle is removed, it will continue to run forward - but it will not stop - something that we will solve

next! Make sure that you save your project with a suitable filename.

The script now needs to be improved by changing the method of ‘looping’; so you need to modify it to

look like the script shown at the bottom of the page. This will allow you to press key ‘A’ (Manual

Mode) on your IR remote control to exit the programming loop and stop mBot whenever you want to.

I also suggest that you practice your block nesting skills here too. You don’t have to do this bit, but you

could modify the ‘set - Distance - to ()’ stack block in your original script to measure in millimetres

(using my method for doing this as described in detail in Chapter 9 (page 41) and shown again below:

mBlock 3 had a very useful ‘key (space) pressed / released?’ hexagonal ‘Boolean’ block enabling any

specified key on your keyboard to action / exit from decision making scripts. In mBlock 5 this has now

been replaced by two ‘Boolean’ blocks ‘when onboard button (pressed / released)’ and ‘IR remote (A)

pressed’ ; neither of which are, I believe, quite as useful!

Start to modify your simple sensing script by removing the looping ‘Control‘ block ‘forever’ and

replacing it with a ‘repeat until’ looping ‘C’ block - this will also loop forever; but only until something

that you have specified becomes true (like specifying pressing the ‘A’ key on the IR remote).

From the ‘Sensing’ blocks group drag

the blue ‘IR remote (A) pressed’ block

into the empty hexagonal slot at the top

of the ‘repeat until’ block. Inside the

‘repeat until’ block should be your

original sequence of ‘if / then / else’

blocks that you put inside the ‘forever’

block in your first programme (they

need to do the same job).

Finally, you need to a the ‘stop moving’

block at the bottom (outside the ‘repeat

until’ loop. This will then only be

activated when the ‘repeat until’ bit at

the top of the loop is true. If the ‘A’

key on your IR remote is pressed then

the programme jumps out of its repeating loop and mBot stops.

This modified script is not perfect, but it is indeed a much better solution to the original problem, and

you should have learned a little more from this experiment; so save your modified project once again -

but this time with a new name.

mBot and Me
a Beginner’s Guide

Page 64 - mBot and Me - a Beginner’s Guide

Another (slightly more advanced) Control Programme for mBot - the Line-Following Sensor:

mBot already has something similar to the programme you are about to create

built into its memory; but the aim of this exercise is to understand how mBot

can follow the black line of the figure-of-eight paper track supplied. When the

light energy from the emitting LEDs in the line-following sensor reflect off a

surface, information about the reflective properties of that surface is transmitted

back to mBot and the lighter the colour of the surface, the more light is reflected

(in comparison to the amount of light that is reflected from a dark coloured

surface).

The line-following sensor module mounted on the bottom of mBots chassis at

the front has two infrared emitting LED / infrared sensing LED pairs on the

underside of the module; each pair is mounted about 12mm apart. A pair of

small blue indicator lights are visible on the top of the module and can be seen

just in front of mBots ‘mouth’.

Each blue light is a good indicator of what each LED pair can ‘see’. If both

LEDs are ON, they indicate that there are high levels of reflected light and are

over a light surface - the sensor module returns a value of ‘3’. If both are OFF

this indicates low levels of reflected light (they are over a dark surface) and the

sensor module returns a value of ‘0’.

The sensor uses its LEDs to constantly check the contrast between the surface

below each of them - if the left-hand blue-indicator light on top of the module is

OFF it shows that low reflected light (a black surface) is detected on the left

pair of LEDs and the module will return the number ‘2’.

Conversely, if the right-hand blue-indicator light on top of the module is OFF it

shows that low reflected light (a black surface) is detected on the right pair of

LEDs and the module will return the number ‘1’.

To complete this

exercise, you need to

create a variable called

‘Line_Sensor_Value’

which will hold one of

four values (0, 1, 2 or

3) which are returned

by the sensor.

You also need to

create, a custom ‘My

Blocks’ block called

‘Follow_Line’.

This will define the new stack block shown here on the right:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 65

This ‘Devices’ tab exercise does introduce you to defining a ‘My Blocks’ block for the first time and the

script for your self-defined ‘Follow_Line’ block is shown below.

As you can see, the ‘Follow_Line’

block has four simple ‘If ‘decisions

- if the first is not true then the next

is tried and so on. Since the

‘Follow_Line’ block is inside a

forever loop then this is a constant

circle of reading the sensor

feedback value and reacting in

response to the numeric value

returned. You will also need to

make two separate, simple and very

short ‘start’ and ‘stop’ scripts too

(see below):

N B. The code blocks (shown above left underneath the ‘Follow_Line’ hat block) could all be inside the

forever loop of the primary ‘when (up arrow) key pressed’ ‘start’ script (instead of the ‘Follow_Line’

block shown) but using a self-defined block, as you can see, is a much neater way to do it.

Note too that it is often not a bad idea to have several shorter, isolated (and easier to test) sequences of

blocks in the mBlock 5 ‘Scripts’ area. Using ‘My Blocks’ is a good way therefore of achieving this.

Save your file with a sensible filename as usual.

Programming mBot’s on-board Light Sensor:

Sensors are used to detect events or changes in the environment and send information to programmes or

directly to other electronics devices. When the ambient light around mBot’s on-board light sensor

changes, then, if you create a suitably named variable and make it visible on the mBlock 5 stage it will

show feedback of real-time readings.

This exercise will show how to capture light sensor values and display them as real-time feedback.

Other sensors usually use the same method to collect and display data too.

mBot and Me
a Beginner’s Guide

Page 66 - mBot and Me - a Beginner’s Guide

The on-board light-sensor returns values in the range of 0 to 1000. If mBot is exposed under sunshine

then it probably returns values > 500, in evening light, perhaps only 0 to 100 and indoors (under

artificial lighting) perhaps values between 100 to 500.

You can test this for yourself - so try experimenting with the following ‘Devices’ tab script. You will

need to create a variable called ‘Light_Level’ to display feedback and the ‘Forever’ block will ensure

that the light sensor is constantly updated to display real-time values.

If the ambient light is not stable (e.g. from a fluorescent light), then you will see a

rapid change of sensor values, so if necessary add a ‘wait’ block anywhere inside the

‘Forever’ loop (set to about 0.5 secs) which will reduce the speed of the value

changing in the variable and you will

be able to see the feedback values

rather more clearly.

Click the ‘Green Flag’ or the 'Hat'

block to start the sequence which will

run within the 'Forever' loop until the

hat block is clicked again or until the

‘Stop’ button is clicked. The

'Light_Level' variable on the mBlock 5 stage will show a constantly changing figure of approximately

one thousand and the on-board Buzzer will beep repeatedly.

Try moving one of your hands close to the top of mBot’s mCore board. The 'Light_Level' variable will

drop (into the mid-300s). If the light level drops below 900 the on-board Buzzer will stop playing a

tone. Raise your hand a little and the 'Light_Level' value will rise, and the note will resume playing

when the value rises over 900.

You could try other simple experiments in the same vein too.

You can for instance easily get

mBot to react to the light level in a

room. The sample script on the

right makes mBot move and creates

a soothing (pinkish) LED light

mixture when it begins to get dark.

In this case ‘dark’ is any value less

than 100. To test this script, you

may want to temporarily increase

that value to 600 or 700.

Adding more ‘movement’ blocks

and LED output sequences inside

the ‘If’ section could perhaps create

a ‘Dancing mBot’ sequence!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 67

Programming using Feedback from Logic & Maths Functions:

I found that when I began messing about using simple scripts with Emma that the following two

exercises were a great success - so much so, that we returned to them several times to create new and

improved versions. Look out for them again when we come to programming the add-on LED panel

(see Appendix 1 on page 184).

N.B. Scripts like those shown below (with no robotics commands) can be written either on the

‘Devices’ tab or on the ‘Sprites’ tab, since both will return their feedback to variable monitors on

the stage.

Random Numbers 1 - throwing a ‘dice’

For this you need a variable called ‘Random_Number’ to hold and display a random number and I added

two more variables called ‘Text_1’ and ‘Text_2’ to hold some extra feedback in the form of text

messages displayed on the stage - a much neater way of providing textual feedback than getting a sprite

to give out messages using the ‘say’ or ‘think’ blocks from the ‘Sprites’ tab ‘Looks’ blocks. You could

use just the ‘Text_2’ feedback Variable if you want to (& the “Hey Emma” bit could have been added

into this variable too).

The script and the displayed feedback variables (shown above right) are both very self-explanatory. The

script sets a ‘Random_Number’ variable between 1 & 6 using the ‘pick random’ block from the

‘Operators’ block group and then concatenates the result with the second text variable.

My ‘set (Text_1)to ()’ stack block just returns whatever text is entered into it. The set ‘Text_2’ stack

block uses a ‘join’ block from the ‘Operators’ block group to concatenate the text “You have thrown a ”

with the ‘Random’ Variable.

Every time you click the ‘Hat’ block, a new random number between 1 and 6 will created and the

message will display the new number (although if it generates the same number you will not see a

change).

Save your project with a suitable filename.

Setting the variable monitors on the stage to have no labels actually looked much better and Emma liked

having a digital ‘dice’ quite a lot, so we then devised the next experiment to create again using random

numbers. This exercise is described on the next page.

mBot and Me
a Beginner’s Guide

Page 68 - mBot and Me - a Beginner’s Guide

Random Numbers 2 - the ‘Rock / Paper / Scissors’ game

This exercise uses the same variables as those shown in the previous exercise but with the addition of

something new - a ‘List’. To make a list, click to select the ‘Variables’ block group and then click on

the ‘Make a List’ button.

A little window will open (just like the one for making

Variables) asking you to type in a name for the list - call it

‘Useful_List’ (so original !) and click the OK button.

The name that you gave to your list will now become a

‘Reporter’ block with an assortment of eleven useful

blocks below it (see the diagram on the right):

 A little window with the name of your

list showing at the top will open on

mBlock’s ‘Stage’. The middle of the

window will be totally empty -

signifying no list contents yet.

Click the little plus (+) button in the

bottom left corner and a new blank list

entry slot with a ‘1’ in front of it will

appear in the window - this is for you to

type your first list item - type “Rock”

and click anywhere on mBlocks screen to enter the data.

Click the little plus (+) button again and a second slot will

appear - enter “Paper” and then create a third slot and

enter “Scissors”.

That’s it, the new list is complete.

You can re-size the window by

clicking and dragging the bottom

right-hand corner and you can click

and drag anywhere else on the

background to move and reposition the window anywhere on mBlock’s ‘Stage’. If

you click in any of the list slots, you can edit the contents or click the (x) button to

delete the slot and you can also right-click and ‘hide’ the list from view if needed.

The ‘length’ number at the bottom of the list you will have probably worked out for yourself is the

number of entries in the list.

You can use a list like this in a very similar way to a ‘VLOOKUP’ table in Excel by return anything

stored in the second column windows by specifying a number in the first column windows. A specified

number returns output from the second column of the row specified by the number.

Reopen your simple ‘dice throwing’ script (the previous exercise) and save it with a different filename.

You can now modify it to look like the one shown at the top of the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 69

You should be able to understand how this works. A random number (1,2 or 3) is generated and the

‘Reporter’ block ‘Random_Number’ (let’s say it’s a 3) is used as the lookup number in the ‘List’ - row 3

returning ‘Scissors’. Save your basic game project with a sensible filename.

Emma thought that pressing the space key as well as using your other hand to make your chosen game

shape wasn’t very good, so we decided to modify and improve this script a little more by involving

mBot.

Since this modification involves a robotic block, this script needs to be

created on the ‘Devices’ tab and not on the ‘Sprites’ tab. You could make

the whole thing again from the beginning, but if you open your project file

from the exercise above

then might have written it

on the ‘Sprites’ tab, and

you can’t drag scripts

across to the ‘Devices’ tab like you can

duplicate scripts by dragging them

between sprites.

But, your variables and the list that you

created are available to both ‘Devices’

and ‘Sprites’, so you just need to

remake the block script again on the ‘Devices’ tab (switching

briefly to the Sprites’ tab if necessary to remind you what blocks

were used.

You need to add an additional variable called ‘Distance’ and then

modify the script as shown on the right. Make sure that mBot is

‘Connected’ before you run the script. Nothing happens until

mBot detects movement just in front of its sensor. This enabled

Emma to make the ‘game hand-shape’ and mBot then responded by running the rest of the script to

generate its random response. Finally, the script pauses for two seconds and then supplies a blank

(empty) response to the three output monitor windows on the stage.

This modification made the game much more realistic to use with mBot as the opponent and Emma

really did like this version - but watch out (as with the basic dice-thrower exercises) there are yet more

enhanced versions of this to follow as this book progresses!

Save your project once more with another (different) filename to the exercise at the top of the page.

mBot and Me
a Beginner’s Guide

Page 70 - mBot and Me - a Beginner’s Guide

Chapter 12 - mBlock 5 - Graphics Programming

Using textual feedback on the stage is all well and good for the simple levels of ‘dice’ throwing and the

‘Rock, Paper, Scissors’ game discussed in the previous chapter. ‘Pictures’, as they say, ‘speak a

thousand words’ so being able to manipulate graphics on the mBlock 5 stage is an important skill to

develop in its own right. Stage graphics can be purely sedentary - just a meaningful backdrop for

instance or a sprite image added in front of the backdrop as an ‘actor’ Graphics such as mBlock 5’s

‘Panda’ sprite could very easily be programmed to ‘say’ the outcome of a random number dice throw in

a speech bubble.

At the level of understanding that we are working at

now, it is only possible to display words on the stage

by using the two blocks ‘say’ and ‘think’ into which

you can put any alphanumeric characters (combined with variables

data too if you want) into a speech call-out bubble or a thought call-

out bubble.

Using these blocks, sprites can display meaningful text and sensor information; but who really wants the

default sprite to be saying or thinking feedback from mBots sensors ! ? ! If you create a blank sprite in

the costume editor, to use for text output using these blocks then the bubbles rather eerily appear out of

thin air. Surprisingly, the ‘say’ and ‘think’ blocks can display a lot of text - approx. 480 characters (24

characters per line x 20 lines).

A modification wish: If a new Scratch block could be created, perhaps called ‘label’ and with a simple,

non-specific outline (such as a round-cornered rectangle) then it would be much more useful than the

‘say’& ‘think’ call-out bubbles and this would be VERY useful. Creating an additional block such as this

might, I guess, be fairly easy for the MIT group (or Makeblock) to programme and add to the ‘Looks’

blocks collection?

You can if you want to, use the ‘text’ tool in mBlock 5’s costume editor to make labels of any size and

shape that can be positioned anywhere on the stage. The fonts are rather limited and there is no

justification or emphasis like Bold or Italics, but you can colour text in any shade you like & you can

cheat a bit by duplicating a text sprite, changing its colour and then positioning it over the top of the first

to create a drop-shadow effect.

Throwing ‘real’ dice on to the mBlock 5 stage

To do this you need to create an animation, using a graphic image of a dice showing every possible

combination of spots on the dice. You need therefore six matching images showing each of the different

spot permutations. You could take photos of a real dice to do this (or source dice-face images from the

internet) but it is much better to create your own drawn graphics. (See Chapter 14. This provides a lot

of information about how to draw and create sprites). To use graphics on the stage that you can

manipulate via scripts, you need to be on the ‘Sprites’ tab.

Animations in Scratch programming are achieved by changing a sprite’s costume, so the basic

programming principle here is if ‘Random_Number’ = 1 then show costume ‘1’.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 71

I already happened to have a set of dice images (drawn in ‘Word’) at least twenty years ago to illustrate

random numbers in ‘Excel’. Making them is not difficult - but do refer to Chapter 14 for guidance. I

based my drawings on ‘Isometric Projection’ a technical drawing way of showing pseudo 3D images

with all horizontal lines being drawn at 30˚ and all vertical lines remaining at 90˚.

To make the top of a cube, draw this ‘diamond’ using the ‘Freeform Shape’

tool. Duplicate it twice and rotate one duplicate by 60˚ and the other by -60˚

and position them as shown on the right.

Add an ellipse to fill the top of the resultant ‘cube’ and duplicate it twice too. Rotate

one duplicate by 60˚ and the other by -60˚ and position them as shown here. You now

have now created some very useful basic isometric rectangles and circles for 3D work.

There are nine positions where a spot can be found on each face of a dice,

so divide up the top face of your cube with more 30˚ (isometric)

construction lines as shown in red on the left. Group the set of red lines

and rotate them and add them to each face. Shrink your three ellipses to a

suitable spot size and then duplicate and position them as shown on the left

so that there are nine spots carefully positioned on each of the three visible

faces of the cube. Delete the three sets of red temporary construction lines.

Group everything that you have drawn so that your nine-spot dice cube

becomes one object. Duplicate it five times (so that you have the six dice

face permutations that you need and then (only then) delete unwanted spots

on each face of each of the cubes to leave them as shown below.

You may wish to colour your dice before you make your five duplicates - I did

exactly that, as you can see on the right, making each of the ‘diamond’ faces a

colour of your own choosing and then making the spots a contrasting colour. To

get the effect of reflection on the three internal edges of the dice I added a line

matching the colour of the spots in each direction and added them to each group.

 You don’t have to do this bit, but I also created a round

cornered ‘diamond’ shape (shown on the left) for each of the three sides

of my cube using a subtly graduated fill and then deleted the original

sides. You can see from the diagram (above right) that the rounded

corners and edge lines do add a more realistic look to the finished dice.

Once I had completed my six dice drawings in ‘Word’ I converted them into .png files so that they could

be added to my ‘Sprites Library’ in mBlock 5 (see Chapter 14 on pages 89 to 96 for more on this).

Back in mBlock 5 I could now add the six dice images (named ‘1’ to ‘6’) as individual costumes of a

sprite which I named as ‘Dice’ - once again such an original choice of name!

30˚

mBot and Me
a Beginner’s Guide

Page 72 - mBot and Me - a Beginner’s Guide

I decided that I would start afresh with totally new scripts for this project rather than modifying the very

simple dice thrower script described on page 67.

I created a new backdrop for the stage by going into the graphics editor and filling the whole of the

‘paint’ area with a shade of dark-green (Hue: 30, Saturation: 100 and Brightness: 40) to emulate green

baize. My ‘Dice’ sprite looked good on this.

My concept was to have one dice being rolled from the top of the stage (the starting corner being chosen

at random); the sprite starting small and tumbling to its final resting place in the opposite corner at the

bottom of the stage with the sprite costume being selected by the random number ‘Operators’ block we

had used earlier. To do this neatly and clearly I decided to use self-defined ‘My Blocks’ to maintain

clarity.

Start by creating

the four ‘My

Blocks’ hat blocks

shown on the right

and then create the

primary ‘start’

script using the

‘when (space) key

pressed’ ‘Hat’ block shown on the left of the diagram. Next you need to populate the four self-defined

hat blocks. The top two of these are shown below:

You can see here that the ‘Position_Dice’ block throws the ‘Random_Number’ and chooses the costume

matching it. You will also notice that I have added a ‘play sound’ block which you can omit if you wish

whilst you are creating this project. The short sound that it calls is a recording that I made of dice being

shaken in a soft backgammon dice cup. It’s worth the effort, because this does create the illusion that

dice are about to appear! The ‘Throw_Direction’ block uses another random number ‘Operators’ block

to choose from which side of the stage the dice will be ‘thrown’.

The ‘Throw_Direction’ decision then calls one of the two left /right ‘dice-animation’ script sequences

(shown at the top of the next page). They are essentially identical, so make one first and then duplicate

the blocks to add to the second. All that you need to do is reverse all references to the x position in your

duplicated blocks making positive numbers negative and negative numbers positive.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 73

As mentioned on the previous

page, the ‘Right_to_Left’ script

is a duplicate of the

‘Left_to_Right’ script with all

five (x:) coordinate references

reversed (positive to negative

and negative to positive).

These are indicated by a circle

around them.

The first three blocks in both

scripts position the ‘Dice’

sprite at its starting (top corner)

position, rotate it by 30˚ and

shrink it to 10% of its drawn

size. The next three blocks

increase the sprite size by 10%,

turn it again by another 30˚ and

move it smoothly (glide) to a

new position on the stage.

This sequence is repeated for

another three times until the

sprite has arrived in the

opposite bottom corner and

achieved 50% size.

You may need to adjust these

percentages to match you own

‘Dice’ graphic size. Finally at

the bottom of each script is another ‘play sound’ block (which you can also omit if you wish whilst you

are creating this project). The short sound that this one calls is another recording I made; this time of

dice landing on a backgammon board and as before, this too does complete the illusion that a dice has

‘really’ been thrown!

Save this project with a suitable filename; and there you have it, real moving graphics on the mBlock 5

stage. Emma was really impressed by this version and although the graphics creation methods were a bit

beyond her she did understand the programming including the dice ‘tumbling-in-perspective ‘sequence.

Playing ‘realistic’ Rock, Paper, Scissors against mBot using the mBlock 5 stage

This is a little harder to achieve than the graphical dice project above. First, you need three images of

the required hand shape. You could take photographs of someone’s hand for this or get images from the

internet (but be careful not to infringe copyright). I went for the option once again of drawing them in

‘Word’ using the same the ‘Freeform Shape’ tool to create simple thick outline drawings (using ‘Edit

Point’ nodes to adjust each line. These three Rock, Paper, Scissors drawings are shown at the top of the

next page:

mBot and Me
a Beginner’s Guide

Page 74 - mBot and Me - a Beginner’s Guide

The image on the left shows the edit points (or nodes)

around one of my three ‘hand’ drawing.

At the top of the first finger you can see the selected

node has two levers which use ‘Bezier Curve’

attraction to smooth the curve passing through the

node. This node is a ‘smooth’ point which works like a

see-saw - if one lever goes up, then the other goes

down which affects the path of the line through the

node.

Pulling the handle at one end of the

lever also operates both levers

(either in or out) - the wider the

lever handles move apart, the more

the line is stretched out either side of the node - try it, it’s so easy! Once I had completed my three

‘hand’ drawings in ‘Word’ I converted them into .png files so that they could be added to my ‘Sprites

Library’ in mBlock 5

I opened my last ‘Rock,

Paper, Scissors’ project

file described on pages

68 & 69) to modify the

script that I had created

on the ‘Devices’ tab (as

shown here on the left).

I no longer had the need

to display the ‘Text_1’ or

‘Text_2’ variables on the

stage so I deleted them

from the ‘Variables’

blocks list. I then

removed from the script

the corresponding

’Stack’ blocks.

I needed to add a new block to replace them (as shown here above). This was an ‘Events’ block

‘broadcast (message1)’ - This broadcast block is a VERY IMPORTANT addition, but more about this

on the next page.

I then switched to the ‘Sprites’ tab. Remember, this is where you can programme sprites on the stage.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 75

Just like the dice images in the last exercise, I added my three

drawings as individual costumes into a new sprite which I

called ‘Hand’; each costume appropriately being named as

‘Rock’, ‘Paper’ and ‘Scissors’.

On the ‘Scripts’ area of the ‘Sprites’ tab I created the script

shown on the right. It is very easy to understand and there are

three individual decisions to be made, each choosing the

costume to match the random number generated by the script

on the ‘Devices’ tab and stored there in the ‘Random_Number’

variable.

The last three blocks show the hand-shape costume that has

been chosen, wait for two seconds and then hide it again.

This matches the concept of the script on the ‘Sprites’ tab

showing ‘nothing’ in the ‘Random_Number’ variable monitor

window after 2 seconds. Hiding the graphic (or clearing the

monitor window) is a way of mBot saying “Ready! Play

again”.

Save your project with a new filename and test it.

Emma now not only had mBot sensing her hand movement in front of the sensor, but mBot responded

by showing its own hand-shape choice on the stage; and this looked so good when run in ‘Presentation

Mode’ too!

The clever bit of ‘magic’ here is the hat block ‘when I receive (message1)’. This accepts the signal

‘broadcast (message1)’ sent from mBot via the script on the ‘Devices’ tab and that allows the contents

of the variable ‘Random_Number’ to be used by a script on the ‘Sprites’ tab to choose which graphic is

displayed on the ‘Stage’.

To summarise, scripts written on mBlock’s ‘Devices’ tab CAN send data as part of a broadcast

message to be received by scripts created to receive them on the ‘Sprites’ tab for use on the stage.

This this such an important concept to grasp that I have explained it in some considerable detail in

the next chapter.

If you have completed the last two graphics programming exercises then you have done very well.

M

mBot and Me
a Beginner’s Guide

Page 76 - mBot and Me - a Beginner’s Guide

Chapter 13 - Discovering Broadcast Messages

To 'Green Flag' or not to 'Green Flag' - that is the message …

… In Scratch (and therefore mBlock 5 too) the 'Green Flag' is a programming feature that

will, when the icon below the stage is clicked, set a chain of events in motion starting all

scripts in a project that begin with the ‘when (‘Green Flag’) clicked’ hat block.

You may see that all scripts attached to a sprite thus hatted (and clicked as

described above) will be illuminated, for the period of time taken to run

each script. This shows that they are being run and this is useful for

instance if you want to populate variables with data at project-start-up. A

‘Green Flag’ icon click runs all such scripts in a project in parallel; whilst

a ‘hat’ block click only runs the script that is clicked. As mentioned on

page 53, clicking on the ‘Hat’ block at the top of any script on the stage is something that you may well

have got into the bad habit of doing in some of the earlier exercises in this book? - I did & still do!

As your projects get more complex, you must however use the ‘when (‘Green Flag’) clicked’ block with

some care. My recommendation is not to use more than one ‘Green Flag’ hat block in a single project

since this can create errors that are difficult to diagnose; these errors often only appearing occasionally

with every other start of the project and such errors can cause timing issues.

If at all possible, therefore, use just one ‘Green Flag’ block followed by

‘Broadcasts’ to activate all other scripts that need to run when the project begins.

When creating a project, it is fully possible to avoid using the ‘Green Flag’ at all if you design it to be

started by a key on the keyboard being pressed or a sprite on the stage being clicked.

It is possible too to auto-run a project by adding a 'when (timer) > (-1)'

block to a project; and then when the project is opened, the 'Green Flag' will

be activated and any 'Green Flag' scripts will auto-start as described above.

N.B. If you are running a project ‘Offline’, then pressing the ‘Enter’ key on a keyboard will start all

'Green Flag' scripts. If you shift-click the 'Green Flag', then ‘Turbo Mode’ will be activated; whilst a

‘Control-click’ will mute the project so that a project cannot produce any sound. The opposite of the

'Green Flag' icon is the ‘Stop Sign’ icon and if you click it, then a project will be halted

and stop all scripts. If you add the ‘Cap’ block ‘Stop ()’ to a script and set it

to ‘all’ then this has the same effect as the ‘Stop Sign’ icon, halting a project

and fully-stopping all scripts.

Apart from the basic dice-thrower exercise on page 67, all of the programming exercises demonstrated

so far have involved mBot and thus the need for robotics programming blocks. It has been mentioned in

every exercise too that you must therefore be on the ‘Devices’ tab to access these specific blocks. The

‘Sprites’ tab is very much for manipulating graphics on the mBlock 5 stage (its called ‘Scratch Stage

Programming’) and as we have demonstrated, the stage can be used to display variables data and

feedback data from mBot in monitor windows - see Chapter 14 (page 86) for more on these; but on the

face of it, not very much more is easily possible - so how do you achieve anything else?

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 77

“ Eureka! ”

When I found out about ‘Broadcast messages’ and how they are meant to work in mBlock 5 it was

indeed a revelatory experience; and in programming terms a very ‘Damascene’ moment!

Once you realise that mBlock 5 has in reality two different Scratch programming sections to use (with

mostly different blocks in each of them) it is easy to see where you are going to create ‘Device’ scripts

that control mBot and ‘Sprite’ programming scripts that can be used to animate realistic graphics.

The clever bit is to understand how ‘Broadcast messages’ can be used to transfer data-on-demand

between the two to enable you to display sensor feedback from mBot visually on mBlock’s ‘Stage’ (in

any way that you want) and also enable you to click meaningful sprites on the stage to send control

commands back to mBot.

Makeblock seem to want you, the user, to find out about programming their devices yourself so when a

new (completely different) application like mBlock 5 comes along then to where do you turn? There are

no books available on mBlock 5 yet! The ‘GitBook’ is rather brief and there is not a lot of really useful

mBlock 5 content on Makeblock’s excellent Forum as far as I am aware.

However, in late July (2019) I still seem (on this guidance front)

to be “ploughing a very lonely furrow’ ! *** (but see the next page) ***

In Scratch programming, scripts are written to programme an individual sprite and are available to that

sprite only; and that script is only visible in the editor if that particular sprite is selected. In ‘Scratch

Stage’ programming, broadcast messages are used to activate scripts attached to receiving sprites from

any broadcasting script attached to any other sprite.

In mBlock 5 scripts are also used to programme devices so why not, I thought, try this method to

broadcast and receive between a device and a sprite - and it worked - YES, it’s good to talk!

It is indeed quite possible (with a little advance know-how) to display sensor

feedback from robotics devices such as mBot visually in mBlock 5 in any way

that you want by using your own graphics to create high-quality interfaces;

with such data represented on the stage in either digital, analogue or

alphanumeric output formats.

To do this you need to clearly understand the methodology of using mBlock 5’s ‘Broadcast messages’

which must be used to communicate between device tab robotics scripts & sprites tab stage graphics

scripts …

(This is the tab-to-tab ‘transfer-data-on-demand-by-message’ broadcasting trick)

… and there is no other way to get a device and the stage to talk to each other

(apart from using - if you really have to, the Upload Mode Broadcast Extension).

mBot and Me
a Beginner’s Guide

Page 78 - mBot and Me - a Beginner’s Guide

*** I originally wrote this chapter in 1919 - in January 2020 I just happened to revisit the generally

useful ‘GitBook’ mBlock 5 Help Document which can be found at:

https://www.mblock.cc/doc/en/

This had clearly been updated since the last time that I visited it (- it was dated October 2019) and under

‘Device Programming Basic Operations’ / ‘Interact with Sprites’ I found the following section:

 “In mBlock 5, the script editing area for devices is separate from that for sprites. To

implement the interaction between devices and sprites, for example, enabling a sprite to

tell the value measured by the ultrasonic sensor of mBot, you need to use the broadcast

functions to transmit and receive messages (instructions) and values.

Supported devices, communication modes, and connection modes vary according to

broadcast mode.

In the Live mode on mBlock 5, devices and sprites that support broadcasting can

communicate with each other by broadcasting and receiving messages, and therefore the

interaction between devices and sprites can be implemented”.

This statement is actually quite hard to spot

in the help file and although clear in what it

describes, is rather brief in its description

and does not make much of the significance

of what I consider to be such an incredibly

important concept.

You can jump straight to this section of the

‘GitBook’ by using this link:

https://www.mblock.cc/doc/en/hardware-

basic/interact-with-sprite.html

On the right and below are diagrams

illustrating this mBlock 5 Devices tab - to -

Sprites tab ‘broadcast messages’ technique.

Broadcast
Messages

SEND
RECEIVE

RECEIVE
SEND

MOVING DATA

between a device

(mBot) and the

Stage

How to understand

M

https://www.mblock.cc/doc/en/
https://www.mblock.cc/doc/en/hardware-basic/interact-with-sprite.html
https://www.mblock.cc/doc/en/hardware-basic/interact-with-sprite.html

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 79

Using the tab-to-tab ‘signalling’ technique demonstrated

in my diagrams on the previous page you can quite easily

use your own graphics to create high-quality interfaces.

Feedback data from mBot can be represented on the

‘Scratch Stage’ in a variety of real-time digital, analogue

or alphanumeric output formats.

Representations of switches etc. can provide real-time controls for mBot too!

Using Broadcast Messages

Broadcasts are a little tricky but are nevertheless a very useful technique to learn. In Scratch, you use

broadcasts to pass messages among sprites and Scratch has no limits as to where a broadcast can go.

Broadcasts are a simple but very powerful way of implementing event-driven programming and

broadcasts can be used to branch a single sending script into many receiving scripts, or to close many

sending scripts into a single receiving script.

The ‘Broadcast’ block sends messages which are used to control programme

flow and any sprite (including the sprite that broadcast the message) within a

project can listen for that message and respond accordingly. The stage can

send and receive broadcasts too and you can have as many ‘chained’

broadcasts in a project as you like.

You must therefore learn to handle the development of projects running broadcasts with some care to

avoid errors & subsequent mBlock 5 crashes (and consequently you MUST progressively save and

backup your projects frequently too).

Essentially, a broadcast is a specifically-named message that is sent to activate or trigger receiving

scripts after a project has started and without further user input. Broadcasts can be seen as being very

similar to events called into play when certain user actions in a script (like mouse-clicks or key-presses)

are performed.

Broadcasts are sent with the blocks: ‘ Broadcast (message_name)’ or

‘Broadcast (message_name) And Wait’ (which waits until all activated

scripts end before moving on). Broadcasts are received by the hat block

‘When I Receive (message_name)’.

When using broadcast messages to communicate between a physical robotics device and computer

graphics on mBlock 5’s stage you need to initially prepare the way for any device data that needs to be

transferred, enabling it to be stored in sensibly assigned variables using scripts written on mBlock’s

‘Devices’ tab and then sending that data as part of a broadcast message to be received by scripts created

to receive them on the ‘Sprites’ tab.

Got That ! ? ! - Time to move up a gear and into some very advanced work …

https://en.scratch-wiki.info/wiki/Project
https://en.scratch-wiki.info/wiki/Scratcher

mBot and Me
a Beginner’s Guide

Page 80 - mBot and Me - a Beginner’s Guide

Chapter 14 - Creating Graphics Libraries for mBlock 5

I was quite enthused by the Makeblock Android app. when I first saw it on my granddaughter’s tablet,

so I have now added it my phone. Originally aimed at mBot users it now has some interaction capability

with mBot Ranger.

If you click on the ‘Code’ option within the app. it loads ‘Blockly’ (v. 0.8.5 EN) which Makeblock have

developed to teach the basics of coding using drag ’n drop block programming When loaded

(according to its icon label on my phone) it seems however to be called just ‘mBlock’. Blockly dates

back to 2011 and whilst not quite the same visually, does resemble Scratch coding enough to move any

knowledge gained within the

app. across into programming in

mBlock 5.

The ‘Create’ component of this

software allows users to make

their own control interface by

dragging any of the components

available in ‘Design’ mode on

to the main work area from a

library of components on the

left of the screen.

If you switch to ‘Play’ mode,

then these components are

immediately activated, and no

programming is necessary (see

a screenshot of the ‘Create’

screen here on the right).

Using your own layout of switches, power-sliders and direction controllers here; together with

simulated seven-segment LED displays (of four digits) which impressively show real-time numeric

feedback from your device’s sensors is so easy when using this component of the app.

Conversely, mBlock 5 has NOTHING to enable realistic robotics control / feedback interfaces to be

shown on the stage display and certainly nothing like the wonderful stuff that Makeblock have

developed for the Android app. mentioned above. mBlock 5 sadly has no specific device-supporting

sprite libraries which can be added to the stage to produce really useful displays.

Why hasn’t Makeblock developed something similar to this app. as part of mBlock 5?

It would have been really good if Makeblock had created a specific library of such stuff for

robotics work rather than just the existing mBlock 5 libraries which are composed of typical Scratch

‘artwork’. It begs the question, why use mBlock 5 for what can be routinely done in Scratch 3?

The backdrop and sprite libraries in mBlock 5 are typically Scratch and

are NOT robotics oriented at all.

Awesome!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 81

As I have mentioned before, it took me quite a long time to realise that mBlock 5 has in reality two

different Scratch programming sections to use (with mostly different blocks in each of them). Getting to

grips with this basic understanding of mBlock 5 makes it much easier to see where you are going to

create ‘Device’ scripts that control mBot and ‘Sprite’ programming scripts that can be used to animate

realistic graphics.

Creating block scripts on the sprites tab is generally referred to as ‘Scratch Stage Programming’ and the

blocks available for programming sprites are essentially the same as the blocks used in mBlock 5’s

natural parent Scratch 3. But what about ‘hybrid’ scripts - how can you control a robotics device and

interact with graphical output to the Scratch ‘Stage’?

Graduating from mBlock 3 (where there weren’t ‘Device’ or ‘Sprite’ options as separate entities) there

were only one set of programming blocks to deal with and the ‘Robots’ category of blocks seemed to be

just tacked on to the end of the usual set of Scratch programming block categories; rather like

permanently added ‘extension’ blocks. If you wanted to programme mBot then you just used this set of

blocks with the occasional foray into the other block categories to add something useful to the ‘Stage’.

Such hybrid scripts worked very well as long as you didn’t want to upload them into mBot’s flash

memory.

As a new mBot owner in 2018, I wanted to programme mBot as a robotics device. So other than

developing robotic control scripts with a little hybrid ‘Scratch Stage Programming’ added, I did not

develop any of the programming skills that advanced ‘Scratchers’ tend to have; and so even after using

mBlock 3 for a year, I was, at the start of 2019 (and switching my allegiance to mBlock 5) not an

enthusiastic or skilled ‘Scratcher’, only understanding what I need to do to enable me to programme a

robotics device such as mBot.

It took me even longer to understand that the really clever bit of Scratch programming

know-how is to understand how Broadcast Messages can be used to transfer data-on-

demand between ‘Device’ scripts and ‘Sprite’ scripts. This enables you to display (in any

way that you want) sensor feedback from mBot visually on mBlock’s Stage and also enables

you to click meaningful sprites on the stage to send control commands back to mBot.

Why does Makeblock not make this vital piece of knowledge clear? As far as I

understand from the excellent Makeblock support team, they are happy to resolve

problems relating to their hardware or software but are not there to provide specific

guidance on programming techniques.

The purpose of my book is to experiment with, understand, and explain all things mBot and I ask

myself why (?) when it comes to graphical on-screen feedback from robotics devices, has Makeblock not

given much thought to mBlock other than enabling you to develop scripts to control robotics devices

such as mBot using the programming blocks (and extensions) available on the ‘Devices’ tab.

Why is there nothing robotics related for the ‘Sprites’ tab? Numeric feedback from device sensors and

data held in named variables (created by you) can be shown using ‘monitor readouts’ added to the

‘Stage’; but not much else is easily possible under the devices tab since anything further than that

necessitates switching to the ‘Sprites’ tab. Writing simple control scripts for mBot on the ‘Devices’ tab

is very straightforward (after using mBlock 3) but when it comes to the ‘Sprites’ tab, you need to

develop much more skill as a Scratch programmer.

mBot and Me
a Beginner’s Guide

Page 82 - mBot and Me - a Beginner’s Guide

I had to do exactly that in developing my own understanding of Scratch programming to enable me to

fully utilise mBlock 5 to programme interactive controls for a robotics device such as mBot.

After many years of teaching, I am supposedly good at creating realistic graphics so ...

… I decided that I needed to emulate the fine example of the Android app.

described earlier and create my own comprehensive sprites library of robotics

control components and several simple multipurpose backdrops on which to

display them.

When creating useful stage-interface screens to work with mBot or any other robotics device you first

need a suitable backdrop where you can then place switch or button sprite graphics which may need to

have several ‘when this sprite clicked’ scripts attached to them.

It makes sense to write a simple one-line script for every sprite that you create to enable it to reposition

itself (that is, if you happen to drag it by mistake!). Then switch or button sprites require a script to

animate any audio-visual effects needed to suggest realism when clicked (moving either up-and-down or

in-and-out etc. together with a suitable sound effect). Finally, these sprites require a script to a carry-out

the required action that you want to take place when the graphic is clicked (but this could be part of any

audio-visual script).

Images created for the stage (whether backdrops or sprites) need to be carefully thought out and well

planned. Because of the very nature of the Scratch stage’s display resolution any original artwork that

you create must be the of the highest quality possible to meaningfully represent and manipulate

feedback from a device such as mBot.

Scribbling outline design concepts down first and creating simple sketches of your ideas is sensible.

Creating an evaluation / planning algorithm (considering perhaps the specific implications of Who?

What? Why? Where? and When?) for any potential display layout is almost certainly a good idea too.

But what method should you use to create the meaningful sprites and backdrops required? The obvious

choice is the costume editor in mBlock 5. In it you can create all of the images for any project that you

wish to make. It is quite powerful, versatile and generally so much better than that it was in earlier

versions of the software and for many users it is now quite possible to generate reasonable looking

images, either as bitmap paintings or vector based (editable / movable) drawings; but it has a major

drawback ...

… If you draw anything in the costume editor then there is NO ‘SAVE TO COMPUTER’ option

(although mBlock 5 can since its recent update export sprites as .sprite3 files).

You can’t download anything created in the mBlock 5 costume editor into your own filing system for

future use and neither can you add them into the backdrop and sprite libraries like you can with graphics

created outside the application. You can however upload your own graphics (both backdrop & sprite

images) into mBlock 5. There are occasions when simple sprites can (and should) be created in the

costume editor; labels for the desktop are a good and effective example; but the only sensible option is,

for the most part, to create both backdrops and sprites outside of mBlock. Such files can then be

uploaded into mBlock’s backdrop and sprite libraries for repeated future use.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 83

Graphics you create elsewhere do have to be in the right format to work,

(ideally .jpg files for backdrops and .png files for sprites) but you do then

have a master copy of these files in your own computer’s filing system and

you can more importantly upload them into mBlock’s Backdrop Library or

Sprites Library where they are always available for adding to any new

project.

When creating both Sprites and Backdrops, I always use the vector-graphics

precision, complex colouring options, 3D extrusions and overall editing

versatility of Microsoft Office; usually using Word.

My first drawing test in Word was to emulate the buttons from the Android

app. My drawn copies of these are shown here on the right:

You can easily capture anything you draw in Word as a bitmap (by screen-grabbing it, using Windows

‘Snipping-Tool’) and after a little more editing you can then upload such image files into mBlock’s

Sprites or Backdrops libraries for further use in new projects.

If you don’t have Microsoft Office, then the free alternatives ‘OpenOffice’ and ‘Libre Office’ do work as

substitutes very well.

About the mBlock Graphics (Costume) Editor

The costume editor has a

transparent background

(this looks like a tiny

checker-board pattern) and

both vector and bitmap

images created here are

thus surrounded by

‘nothing’ when used on the

stage; and all that you see

on screen is what you have

drawn!

On the odd occasions that

you might want to draw in

mBlocks costume editor,

(just like in Word) always

use vectors for accuracy

and editability.

Vector drawings created in

the editor can be controlled

in a very similar manner to

the drawing techniques

used in Microsoft Office.

This pattern

designates a

Transparent

Background

mBot and Me
a Beginner’s Guide

Page 84 - mBot and Me - a Beginner’s Guide

For the reasons outlined earlier regarding the inability to save and reuse images created in the editor this

is not my preferred method; but as demonstrated, it is possible to create a reasonable quality 7-Segment

LED graphic. A ‘screen-grabbed’ image of this, drawn in the Graphics Editor, is shown in the

illustration at the bottom of the previous page.

In the editor, always position a sprite in relation to the default center (x, y) position; either leaving your

drawing evenly spaced around the center of the sprite or (for a specific reason perhaps) with the x, y

center position of the sprite set at one corner or another significant feature of the image.

If you must use the editor, then it will help considerably if you learn several basic vector drawing

concepts. Clicking the pointer icon together with holding down the shift key enables you to add

individually drawn vectors together and group them to become one object. You can drag the pointer too

to create a ‘marquee’ box around a collection of shapes for grouping purposes. With an object selected,

pressing the Tab key will step you forward through object sequences, whilst holding down the Shift key

and pressing the Tab key will step backwards – this is in the order of object creation NOT in the current

stacking order.

Holding down the Shift key whilst drawing will also constrain a line to be either horizontal, vertical or at

45˚. Using Shift when drawing ellipses or rectangles will produce equal growth of the shape in x & y to

produce circles and squares. Using the Alt key whilst dragging with the mouse pointer will grow shapes

from the centre outwards and a combination of the Shift & Alt keys together will constrain shapes to

remain both equal in x & y and grow (or shrink) from the centre all at the same time.

About Creating Useable Graphics in Word

This can be summarized as follows. First, you create a precision graphic using Word’s powerful vector

drawing tools and then capture an image of it using the Windows ‘Snipping Tool’ and then finally save

that image as a .jpg file with a suitably descriptive name (.jpg & .gif are the only save options with the

‘Snipping Tool’). At this stage the .jpg image that you have captured will be surrounded by the

background of your Word page (usually white by default) and this colour needs to be made transparent

for sprites to work effectively.

To do this, you need to load the .jpg file you have captured into a graphics editing package such as

Photoshop and use the ‘Magic Eraser’ tool to set any unwanted white background into ‘transparent’. (If

you don’t have Photoshop, then free alternatives such as ‘Irfanview’ and the ‘GIMP’ will convert .jpg

files to .png format and both can save the transparent attribute).

A transparent background in Photoshop has a tiny checker-board pattern (just the same as the

background shown in the mBlock graphics editor diagram on the previous page). Zoom in to check the

edges of the shape very carefully and erase more background if needed.

Use the ‘Clone Stamp’ to edit individual pixels if further work is necessary and to touch-up any

damaged areas especially around the perimeter of the required shape. You need to spend some care and

time using both of these tools to prepare a sprite since any background un-erased will show when the

sprite is used in mBlock 5. To retain the transparency around the sprite when it is uploaded into mBlock

5, you must save the file as a portable network graphics (.png) format file - this is the only graphics file

that mBlock will accept.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 85

About the mBlock 5 v 5.1.0 stage interface

An updated version of mBlock 5 was released in early July 2019 with a modified user interface which

generally has been improved. On the ‘Edit’ page, the ‘Scripts’ area is larger and there are now just two

choices to adjust its size (and therefore the ‘Stage’ size too). A sad loss from the ‘Menu’ bar however is

the button giving instant access to ‘My Projects’. To choose a project you now have to (marginally

more slowly) select ‘Open’ from the ‘File’ menu to access the ‘My Projects’ screen; but this is actually

OK once you get used to it.

mBlock’s stage backdrop size still retains the somewhat old standard-screen proportion of 4:3 (and a

paltry resolution of 480 x 360 pixels).

How can computer graphics in the 21st century be of such low resolution?

‘Presentation Mode’ only doubles the

display size of the stage, and bitmap

graphics look somewhat pixelated in

this mode, but it does not ever go to full

screen height - why? - let alone adjust to

the proportions of a modern widescreen

monitor and the same is true for both

mBlock 5 & Scratch 3.

Makeblock say that the interface now

has brighter colours and yes, I would

agree.

Both the ‘Edit’ page and full-screen ‘Presentation-Mode’ seem to be sharper brighter & clearer. Sadly,

the area surrounding the ‘Presentation-Mode’ screen is no longer dimmed down (to nearly black) as it

was in version 5.0.1. Note the full-screen ‘screen-grab’ above showing the limited size and proportion of

the ‘Presentation Mode’ window on a modern widescreen monitor).

Making the surround totally black would have been a much better option. In the new release, the

surrounding screen is only slightly dimmed which does have the advantage of seeing a looping script

‘pulse’ etc. but on the whole it is not really a lot of use and as you can see, does distract from the main

event (the bit that you do want to see) the presentation screen in the centre. A second full-screen

‘screen-grab’ showing the new slightly

dimmed ‘Presentation Mode’ screen on v

5.1.0 is shown here on the left.

A suitably designed backdrop is all that is

needed if you wish to display data in the

default variable or sensor monitors that

mBlock provides. As can be seen in the top-

left side of the presentation screen image

here and above, data can be shown on the

stage using default (standard size, labelled)

‘monitor readouts’.

mBot and Me
a Beginner’s Guide

Page 86 - mBot and Me - a Beginner’s Guide

Data monitors such as these display values held in named variables that you have created. In mBlock 5

there are now monitors that can display device

sensing feedback in a similar fashion with their

screen output displayed in blue monitor windows.

Data monitors are useful when developing and testing projects but are rather ugly to look at; and as you

can see, increase in size dependant on the length of the variable (or sensor’s) name.

Note too that the monitor readout windows are marginally smaller if there is no data

at all stored in the variable and they do increase in length if more than four

characters are stored (as demonstrated on the diagram on the right). A double

mouse-click on monitors shown on the stage toggles in turn through each of three

different monitor readout variants. These variable monitor readout windows are

always orange in colour with a grey rim hinting at a recess.

As can also be seen on the presentation screen images on the previous page, I used three ‘large’ variable

monitor readouts - the ones with no name label (showing the numbers 1 and 4 and 8).

These large, label free, monitor windows are visually rather more useful, BUT they only remain in the

large setting state in the stage display as long as the mBlock 5 application is open. If you close and exit

mBlock 5, then saved projects lose their ‘large’ setting variable displays when mBlock is restarted and a

project reopened, reverting back to the default, standard size monitor (with their labels showing)

although they do seem to remember where on the screen they were positioned.

This seems to be a minor programming error from Makeblock here since large monitor readout settings

do save and reload correctly in Scratch 3 projects. This error was there in v5.0.1 and still exists in the

new update (v 5.1.0). Projects still do not remember which of the three monitor windows were last

active when they are reloaded in a new software session. They do remember where they were positioned

but they always default back to the named (labelled) monitor type. I quite like using them but sadly

(unless Makeblock correct this soon) this makes the use of large monitor readouts unusable in a project.

The third choice of variable monitor readouts is the ‘slider’ (an example of one of these is also shown in

the image on the previous page). This variant does have some uses, but in both mBlock 5 and Scratch 3

they are now limited to a range of 0 to 100 (unlike in its predecessor mBlock 3) where you had the

extremely useful option of being able to set your own min. & max. values for the slider adjustment of

variables.

N.B. All three variants of the variable monitor readouts mentioned above are hard to position accurately

on the stage backdrop because they can only be moved by dragging them with the mouse (there is no x

or y positioning for monitor windows like you can set for sprites). Tip: Create a temporary sprite with a

vector drawn horizontal (or vertical) line and use it on the stage to help align other sprites or monitor

readouts; and then delete (or just hide) the temporary sprite on completion. For info.: the ‘large’

variable monitor readouts (the ones with no name label) measure 62 x 36 pixels in size.

You may have noticed in the same screen-grabbed images shown on the previous page that it is

possible with the right know-how to create a seven-segment LED display monitor of your

own design using carefully drawn sprite costumes and some simple programming to match

sprite costume graphics to numbers held in data variables.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 87

Seven-segment LED displays are commonly used in digital clocks & calculators etc.

Without the need to show any of mBlocks graphically limited monitor readouts on the stage at all, sprite

graphics that you create yourself allow you much more flexibility (in both size and position) when a

project requires you to echo the contents of stored variable or sensor feedback data. Home-grown high-

quality graphics used to simulate alpha-numeric data input or output controls does give to any project

shown in ‘Presentation Mode’ on the ‘Stage’ a very professional looking interface.

Can you save your graphics elsewhere?

If you want to save & move your carefully crafted projects and libraries to another computer or other

storage device, you can - in a roundabout sort of way because they are all stored in the following path:

C:\Users\your username here\mblock\

This folder contains several sub-folders which are updated every time you do any work in mBlock 5.

Two of these folders are named ‘sprites’ and ‘projects’.

The ‘sprites folder has four .json database files (backdrops, costumes, sounds & sprites) and show as

thumbnail images of all of the graphics that you have created.

Files are shown in these library folders as thumbnails, but with unique names written in hexadecimal

code. The .json files seem to be an index of mBlock’s libraries of uploaded files.

You could, if you want to, just copy just the two ‘sprites and ‘projects’ folders to use elsewhere (on

another computer or as a backup archive) but you could also store the entire mBlock folder instead, as a

backup, if you think that you might need it.

N.B. Files loaded into a computer from the Cloud do not add their libraries to that computer.

New to mBlock 5 in the v 5.1.0 update (but already available in the launch version of Scratch 3) and a

massive improvement is the much needed ‘Export’ sprites facility enabling reuse of the block code and

multiple costumes for that sprite when uploaded into other projects. Any attached (or floating) comment

call-out notes remain attached to the saved sprite too.

If you right-click on any sprite (or the device icon in the ‘Devices’ tab) then ‘Export’ is an available

choice. This enables you to save a single sprite or device as a .sprite3 file. These can then be added

into another project by using the ‘Upload’ button in the sprites library.

N.B. A sprite containing block scripts uploaded this way is NOT however added into your ‘My Sprites’

library. If the uploaded .sprite3 file was a ‘Devices’ tab device icon, then it opens as a new device icon

on the devices tab (remembering which device type - mBot or Codey etc.) to which it was attached.

This is a very quick way to start a new project with some useful device stuff and sprites already in

place!

N.B. It’s a very good habit to always save individual sprites

which you consider to be reusable / modifiable.

mBot and Me
a Beginner’s Guide

Page 88 - mBot and Me - a Beginner’s Guide

Creating a Backdrop Screen Library

Using mBlocks default white stage

background is boring - so, what

does constitute a good graphic

backdrop as an environment for

robotics control? … what do you

use as a backdrop for these things?

Whatever you want, I guess?

I created ten specific but fairly

neutral backdrops for robotics

control by drawing them in Word

and then ‘screen-grabbing’ the

resultant images.

On the face of it, the only method of

presenting device feedback on top

of mBlock stage backdrops is by

using mBlock 5’s useful but rather

limited output monitor windows

that can display variable and sensor

feedback (see much more about

these on page 86).

This is fine for many projects and

you can choose whether to hide or

show these variable monitors on the

stage by clicking the tick box in the

variable panel next to their names or

by right-clicking a monitor and

selecting hide.

I create my Backdrops on a Word

page which had been turned into

landscape mode and the margins set

to 3mm. On that page I draw a

rectangle 240mm x 180mm to

representing the exact proportions

of 480 x 360 which is the pixel

display size of the Scratch stage (an

equivalent of ½ mm to one pixel).

I created the ten different and easily

switchable (when uploaded into the

backdrops library) rectangles

(shown above right) to use as ‘test-bed’ screens for robotics work in mBlock 5.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 89

The backdrop that I liked

most (and decided

should be my default

‘set-up’ screen when

mBlock 5 opened) was

made to look like white

graph paper with light

green dotted lines

dividing the screen into

20 pixel squares and

slightly thicker lines

every 100 pixels (shown

here on the right):

This looked good and

indeed rather useful for

helping to position

sprites accurately when

planning the layout of

interfaces.

I decided that adding some default text top and bottom using WordArt gave it an air of authenticity.

To create files suitable for uploading, I captured them straight from my Word page using the Windows

snipping tool; and to make sure that they were exactly the right dimensions I loaded each ‘Snip’ into

Photoshop and used the cropping-tool set to 480 x 360 pixels to crop them to an exact size and

resolution before resaving them as .jpg files.

I next created a similar backdrop in blue with white lines which I called ‘Blueprint’ and then eight more,

several of these making use of some of the different texture fills available in Word. I chose some of the

textures (like ‘Cork’ & ‘Papyrus’) because they were sympathetic to the orange shade of mBlock 5’s

variable monitors. But, as mentioned earlier, I am no longer using these monitors since projects

currently lose their ‘large’ setting variable displays when mBlock is restarted and a project reopened.

Creating a Robotics Sprite Library

Don’t be daunted by this. It’s much easier and much quicker to complete than you would think, so just

be positive - but DO aim for a high-quality graphic EVERY time!

First, you need to make a master set (1 to 9 & 0) of LED digits - the method for drawing these is

described on the next few pages. Once you have these drawn and converted into .png files, they can be

inserted as costumes into a “digit” sprite and the sprite duplicated as many times as you need for

different monitors. Your original sprite can also be exported and reused over-and-over again in other

projects too.

Monitor windows of various proportions are also needed and then you can develop switches, sliders

indicator lamps, direction controls etc. etc. as you need them.

mBot and Me
a Beginner’s Guide

Page 90 - mBot and Me - a Beginner’s Guide

Creating 7-segment LED display numeric digits

As mentioned earlier, is quite possible to bypass variable & sensor data being displayed in any of the

three monitor readouts variants described. It’s much better to display such data using LED type graphics

of your own creation; any size, any style, any colour, positioned accurately anywhere on the stage.

To create your own data monitors, you need to create individual sprites for digital ‘Units’ (or ‘Tens’, or

‘Hundreds’ etc.) with ten individual number costumes added to each sprite. Creating a set of ten LED

digit costume drawings initially seems to be a rather tedious to create, but the work is worth it when they

can be used over-and-over again. Also, and rather complex, (but nevertheless achievable) is the

programming required to match a sprite (and its costumes) to a digit stored in any variable that you wish

to display on the stage.

You can just type individual digits into a sprite in the costume editor (one costume each for digit 1 to 9

and 0). This is a very simple but effective method. You can also capture .jpg images of alphanumeric

characters in any font, style and colour too and these would also be quite suitable for many projects.

However, traditional seven-segment LED display characters look particularly good when showing

device feedback in mBlock 5, especially if they are placed in front of graphically drawn feedback

monitor windows on an equally carefully thought-out stage backdrop.

Real electronic LED displays are available in a variety of LED colours; most notably Green, Red,

Yellow, Purple & Cyan. The Scratch programming ‘change colour’ block can be used to change the

colour of any sprite and the ‘brightness’ of graphics can also be changed using the ‘change brightness’

block to simulate fading or flashing displays. Seven Segment Displays are still very common but are

now often superseded by 8x8 LED matrix displays or LCD displays which produce finer display

characters. LEDs are often in a proportion of 5:3 and typically slope by approx. 10˚ (italicised) but they

can be found as vertical digits too.

As shown in the diagram on page 83, it is quite possible to create these in the mBlock graphics editor;

this diagram shows that if you go to ‘Costumes’ and create (using vectors) a basic grid in a new sprite

and draw just one horizontal & one vertical segment of the seven segments required. You can then just

copy and paste each of these enough times to make up the seven segments required for the numeric digit

“8”. This is the first costume within a new sprite, so you need to simply name it ‘1’ (even though it

looks like an ‘8’ and then duplicate it another nine times in all to create a total of ten costumes for the

sprite & they should have been automatically named 1 to 10. Name the sprite itself ‘Digits’. Next, edit

each costume graphic in turn to delete the segments not required to create each number so that each

costume matches its name (& rename the last costume “0”).

As mentioned earlier too, using the Graphics Editor is rather pointless since any graphics created here

cannot be reused easily. It is therefore far easier to create much more precise LED digits using the

drawing tools in Word which can then be converted to the correct format and uploaded into your sprite

libraries.

Using Word to do this is much quicker than you would think since numeric digit “8”contains all seven

segments of a LED display and all the other number costumes can be made by duplicating this one and

deleting the segments not required for each number. (See the drawn diagrams on the next page).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 91

First you need to first create a precision construction grid; eventually sacrificial, but nevertheless

important in developing an accurate technical drawing. Draw two (thinnest line possible) rectangles one

50mm x 30mm and the other 38mm x 18mm and middle them horizontally & vertically. Group them

together & make the line colour blue; these signify the outer and inner dimensions for your drawn

characters enabling 6mm thick individual segments to be drawn to create the component segments of a

LED graphic.

Draw a vertical red line, with its Height set to 60mm and then draw a

horizontal red line with its Width set to 35mm. Duplicate these lines five

more times to make six of each in all and position them on top of the two

rectangles as shown in the diagram on the right.

You need to set each group of three lines (both horizontal and vertical) to be

3mm apart in each direction. Use ‘Middle Horizontally’ and ‘Space

Horizontally’ to help you do this to the vertical lines and then use ‘Middle

Vertically’ and ‘Space Vertically’ for the horizontal lines. Finally group all

of the lines together and you can then, if you want to, delete the blue

rectangles.

You should by now have an accurately drawn red-line grid that looks like

the one shown above right.

To create the slightly more sophisticated italicised look (and this is the

style that I personally think looks best) you need to start by duplicating the

grid you made earlier; ungroup this duplicate grid and rotate all of the

vertical lines by 10˚. Regroup the new grid and it should look like the

diagram shown here on the left. You now have an upright grid and an

italicised grid for creating seven-segment LED graphics. Save your file.

Return to your original upright grid so that you can create the required

segments. To obtain greater accuracy increase the zoom factor of the Word

page so that your drawn grid fills most of your screen.

Select the Freeform Shape tool and click it in the centre intersection of the

topmost left-hand corner of your grid and draw a segment like the

horizontal one shown in the diagram on the right.

Next draw a vertical segment like the one shown below it.

Duplicate these as necessary to complete all seven segments of an upright

LED “8” digit.

This is the only digit you need to create to make a complete set of upright

number digits since it contains ALL SEVEN segments of the LED display.

All the other digits can be made by duplicating this one and deleting the

segments not required for each number.

mBot and Me
a Beginner’s Guide

Page 92 - mBot and Me - a Beginner’s Guide

To look like a real LED display, the segments now need to be separated slightly.

Leave the centre segment where it is and use the cursor keys to nudge the remaining

segments as follows:

Top & Bottom segments (three nudges outwards)

Side segments (four nudges outwards).

This may sound quite a lot of nudges, but as you can see in the set of digits (on a

black background) shown below-right, the smaller the LED digit, the less noticeable

are the gaps between the segments.

It makes sense to shrink segment-separated (stretched) digits

back to their originally designated 50mm x 30mm size. Use

another temporary 50 x 30 rectangle to do this (see the

diagram above).

Group all seven segments together and duplicate them nine

times in all to make the complete set, deleting the relevant

segments from each digit as required. Align all 10 of these

digits into a horizontal line and space them evenly.

You don’t have to do this bit, but if you add a temporary construction line at the top and another one at

the bottom of the row of digits you will see that the vertical segments in the digits 1, 4 , 7 and 9 do not

reach either the base line or the top line (in reality, this is what would happen with the segments of a real

LED display). I am inclined to follow this principle, leaving the height of these segments as they are -

but you might wish to make them all the same height; so, just stretch each segment of these four digits

vertically to touch the construction lines (see above) and when this is done, delete the two lines.

To create my preferred (italicised) LED digits, you need to repeat a process

similar to the one described for creating upright digits, but this time using

the second (leaning 10˚) red grid that you made.

The middle segment of this new digit can be copied from your vertical

LED drawing. Once again, use the Freeform Shape tool and create the

remaining six new segments as shown in the diagram on the left.

Remember to zoom-in as much as you can to draw these remaining

segments. Accuracy when drawing segments on top of the grid is vital.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 93

Modifying your drawn shapes using Edit Points is an important skill to master

too and do not be afraid of deleting a shape and completely redrawing it again

if any segment does not look right. Finally, remember to nudge the segments

apart and then shrink the group of segment-separated (stretched) digits back

to their originally designated size.

The outline of all of the drawn segments of my two basic green LEDs are set

to NO Outline and the flat-fill colour that I have used is demonstrated here on

the right. When creating these drawings in Word, the HSB colour fill settings

are: Hue: 85, Saturation: 255, Brightness: 180 and their equivalent RGB

settings are: Red: 100, Green: 255, Blue, 100.

However, when editing in Photoshop, colour fills are vastly different to the settings to those in Word

(described above) and different again in mBlock’s own graphics editor. Photoshop’s equivalent settings

to the shade of green I used in Word are: HSB Hue: 120, Saturation: 80, Brightness: 100 and RGB Red:

50, Green: 255, Blue: 50.

To create digits with transparent see-through backgrounds you do need to edit them in a graphics editor

such as Photoshop and save them as a portable network graphic (.png) file. This file type is commonly

used to store graphics for web images (where they always need to have a transparency attribute set).

You can see that in the image on the left that the

outer corners of the italicised LED digit that I created

look quite sharp and ideally should be radiused

slightly; but this would be hard to achieve using the

vector drawing methods described earlier. BUT - it

is possible to do this when converting the drawing

into a .jpg painting file which you can edit in

Photoshop.

I found that the best way of creating a full set of ten

numeric digits (0 to 9) was not to create them by

duplication and editing in Word but to create just

ONE seven-segment LED number “8” digit (one

italicised and also if required, one upright - see the two images above).

I found that adding a black background behind (and just surrounding) my two “8” digit drawings worked

well enabling me to check my visualisation modifications clearly . To create the two images above, I set

a ‘No Outline’ attribute for both and applied several 3D transformations which gave them a much more

realistic “illuminated LED” look. These transformations were:

Bevel 6 x 6, Depth 6, Contour Dark Green, Material Plastic and Lighting set to 3-Point.

These seemed rather more realistic than the flat-green early versions (although they look good too).

Using the Windows Snipping Tool, I captured each of these “8” digit drawings on their black

backgrounds in turn and saved them as .jpg files with a suitably descriptive name (remember, .jpg or .gif

are the only options).

mBot and Me
a Beginner’s Guide

Page 94 - mBot and Me - a Beginner’s Guide

I named each of these files Digit (italic) 8 and Digit (upright) 8. I then created two file folders called

LED Sprites (upright) and LED Sprites (italic) and moved each of my two newly created .jpg files into

their matching named folders.

In each folder I copied the original Digit upright / italic 8 file and pasted it back into the folder until

there were nine copies of the original “8” digit file in each folder. I then altered the name of each so that

the number at the end of each filename was from 1 to 0 (even though at this stage they all had the same

“8” graphic) and each one still with a surrounding background colour of black (which eventually needs

to be made transparent). To create this transparency, I loaded each .jpg file in turn into Photoshop and

used the ‘Clone Stamp’ set to mimic the black background and then painted-out the unwanted segments

for each digit.

When each number looked as it should (matching it’s file name), I switched to the ‘Magic Eraser’ tool

and used this to set the unwanted black background as transparent (the tiny checker-board pattern). I

used the ‘Zoom’ tool to check the edges of the shape very carefully and erase more background if

needed. Mostly this worked perfectly much of the time. I also used the ‘Clone Stamp’ again to touch up

any damaged areas especially around the perimeter of the required shape.

The Magic Eraser with its tolerance set to 40 worked well and I had very little further editing to do but

you do need to spend some care and time using both of these tools to prepare a sprite since any

background un-erased will show (annoyingly) when the sprite is used in mBlock 5.

After I had edited and saved each of my numbered digit images files in turn, I opened each folder to

check the thumbnails to see that I did indeed have a complete set of ten digit images (0 to 9). Finally, I

reloaded each .jpg file in turn back into Photoshop and saved each one as a .png (portable network

graphics) format file which retains the transparency attribute set of the sprite; and when each folder had

ten individually named .png files (each showing just a unique numbered digit image with no black

background) I no longer needed my original set of .jpg files, so I deleted them. You may not be brave

enough to do this, so do keep them in the folder if you wish to.

Next, I turned my attention to creating a sprite image for a monitor readout window that could be added

to a backdrop and positioned (in any size, anywhere). These needed to be effective as a realistic display

background for my 7-segment LED images. Unlike the black windows used in the Android app. I

wanted the look of a traditional LED display, a recessed dark-coloured window. To make these is very

simple, just a trick of effectively using light and shade.

Draw a Rectangle with round corners and duplicate it to make a second matching rectangle, the second

stacked on top of the first. Give the first of these a mid-range thin grey outline and set a Gradient Fill

for the shape - Linear 90˚ - dark grey at the top to light grey at the bottom. Give the second of these the

same mid-range thin grey outline and set a Gradient Fill for the shape - Linear 315˚ - dark-blue, bottom-

left to dark-green bottom-right. Reduce the size of the front rectangle slightly (equally in x & y) and

centre it horizontally and vertically on top of the first rectangle. The amount of reduction in size of the

top rectangle dictates the depth of the recess (see below).

Group both rectangles

together - effective isn’t

it!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 95

To try something similar, draw a circle and give it

a mid-range thin grey outline and set a Gradient

Fill for the shape - Linear 90˚ - dark grey at the

top to light grey at the bottom.

Duplicate it and reduce it in size. Reverse the

shading, Linear 90˚ - light-grey at the top to dark-grey at the bottom. Centre the two circles and note

how this becomes a button in a recess!

Duplicate it again and reverse the shading of each circle - now this one

looks like a button that has ‘popped-out’. You’ve made rubber buttons!

Add text into the middle of each button. If you make a ‘Button’ sprite and

upload .png images of each of these drawings as costumes into an mBlock

5 sprite, you can then use the ‘When sprite clicked’ programming block to

change to the next (or previous) costume. You’ll need to create this

simple decision making script to make it work.

If you have tried this out then you will have created a realistic working

button - especially if you have completed the illusion with a suitable sound effect (‘click’) and you can

of course change the grey shades demonstrated above to any colour combination that you like.

Many other .png files with transparent backgrounds can be created using the methods described above. I

used to use these basic skills of manipulating light and shade a lot when I was teaching many years ago

to enthuse kids by getting them to make high-quality graphics which they learned to programme using

VBA (in Microsoft Excel).

In an advanced version of the graphics techniques shown above I used to use an exercise outlined briefly

at the top of the next page. This project was a graphical illusion, using ‘visibility’ to hide/show one

graphic at a time; clicking one graphic hid it and showed its opposite; just a simple on/off animation

trick. Kids reactions when the switch ‘worked’ for the first time (with a ‘click’ sound effect added) were

always amazing; “… I’ve programmed something that goes in-and-out of the screen - Wow!”

Shown below is the method for creating drawings of coloured indicator lamp ‘bulbs’.

OFF ON

 4 circles =

PUSH PUSH or or or

mBot and Me
a Beginner’s Guide

Page 96 - mBot and Me - a Beginner’s Guide

This Excel exercise was so simple, but how effective in developing an enthusiasm for programming and

for spreadsheets too (sneaky teacher!).

Two switch extrusions were positioned on top of each other (on a switch plate recess) and then one of

the two individual VBA subroutines shown was assigned to each of the rocker-switch drawings:

Some other graphics I created to use in the ‘Control Interface’

project described in the next chapter were:

 Position
Both

Duplicate &
Flip

Extrude Draw

Sub hide_OFF_switch()

 ActiveSheet.Shapes("OFF").Visible = False

 ActiveSheet.Shapes("ON").Visible = True

End Sub

Sub hide_ON_switch()

 ActiveSheet.Shapes("OFF").Visible = True

 ActiveSheet.Shapes("ON").Visible = False

End Sub

YELLOW

RED

PURPLE

CYAN

GREEN

7

S

E

G

M

E

N

T

L

E

D

C

O

L

O

U

R

S

7

S

E

G

M

E

N

T

L

E

D

C

O

L

O

U

R

S

START START

STOP STOP

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 97

Design Requirements
for an mBlock 5 stage
‘Presentation Mode’

CONTROL INTERFACE
for an mBot robotics device

Analogue
Meter

Digital
Monitor

 INPUT
REQUIREMENTS

Ultrasonic
Sensor

EXTRA
REQUIREMENTS

‘Power’
On / Off

Sensor
On / Off

Digital
Clock

On / Off

Digital
Day / Date
On / Off

Indicator
Lamps

LED
Colour

Changer

OUTPUT
REQUIREMENTS

Directional
Control

Speed
Control

Slider
Range: 50 to 250
(in increments of 50)

mBot
Forwards

mBot
Backward

s

mBot
Left

mBot
Right

mBot
Stop

mBot and Me
a Beginner’s Guide

Page 98 - mBot and Me - a Beginner’s Guide

Chapter 15 - Building a Control Interface for mBot

Once you realise that mBlock 5 has in reality two different Scratch programming sections to use (with

mostly different blocks in each of them) it is easy to see where you are going to create Device scripts

that control mBot and Sprite programming scripts that can be used to animate realistic graphics.

The clever bit is to understand how Broadcast Messages can be used to transfer data-on-demand

between the two to enable you to display sensor feedback from mBot visually on mBlock’s Stage (in any

way that you want) and also enable you to click meaningful sprites on the stage to send control

commands back to mBot.

By using your own graphics to create high-quality interfaces, feedback data from mBot can be

represented on the Scratch Stage in a variety of real-time digital, analogue or alphanumeric output

formats; and representations of switches etc. can provide real-time controls for mBot too!

My first complete development of a fully working Device / Stage Interface (shown above) is explained

in full detail in this chapter - however in reality each of the sub-component parts of my ideas were ‘test-

bedded’ separately first and then added together to form the complete project which relies on using pre-

prepared graphics uploaded into mBlock 5’s libraries. (See how to make these in the previous chapter).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 99

Power

Switch

ON

Yes No

Start

Stop All

Power Lamp

turns Green

Yes

Clock, Sensor &

Speed Monitors

‘Illuminated’

mBot

Controls

available
Left, Right,

Up, Down &

Stop

Speed

Slider

Available
50, 100, 150,
200 & 250

LED

Slider

Available
Green, Cyan,

Purple, Red

& Yellow

Sensor

Switch

available

Sensor

Switch

ON

No

Ignore

Movement

Button

Clicked

Sensor

Lamp turns

Green

Yes
mBot Lamp

turns Green

mBot moves in

Direction

Indicated

Stop Button

Clicked

mBot Lamp

turns Red

mBot

Transmits

Sensor

Reading

Analogue

Pointer

Repositioned

Lamp turns

Digital

Readout

Updated

Lamp turns

Speed

Selected

mBot Speed

Adjusted

Colour

Selected

LED

Display

Adjusted

My Basic Concept Algorithm

for an mBot

Control Interface

mBot and Me
a Beginner’s Guide

Page 100 - mBot and Me - a Beginner’s Guide

Screen-shots of some of my ‘test-bed’ sub-component projects are shown below:

Once I had an

idea of what

output and input

tasks were

required for a

fully working

interface, I had to

consider the

visual look that I

thought was

needed.

I then to make sure that I developed the required stage graphics for both the display output of feedback

and switch / button / slider input (see pages 90 to 96 of Chapter 14 for more on this). All of these

graphics had to then be uploaded into either my mBlock ‘backdrop library’ or ‘sprites library’.

I decided that the shiny metal plate background that I had created would be my final backdrop for the

project although initially I used my graph-paper backdrop to help me align and position the individual

graphics on the stage. Knowing from early tests that I could get the value from mBot’s ultrasonic

sensor stored in real time in a variable that could be used by graphics on the mBlock stage, I had in mind

that I wanted both digital feedback and an analogue meter of some kind with a pointer fluctuating as the

sensor values changed. This sensor displays distances of up to approx. 4M (4000mm) so I need a meter

capable of displaying 4000 divisions in a semi-circle.

Another quick test showed me that the ‘point in the direction’

block taken from the ‘Motion’ section of the blocks menu

would do this very well as long as the sprite had its axis of

rotation positioned on the centre point position in the costume

editor’s display screen. For 180˚ of rotation / 4000 steps you

need to set the direction of rotation to be (sensor reading x

0.45˚). After this test I knew that I needed to create and add a

new .png graphic of some sort to my sprite library - a monitor

window to create a realistic analogue meter.

My aim was to also have a four-way direction controller for mBot and a ‘stop’ button too. I also

planned to add two moveable sliders, one for altering mBot’s speed and another to change the colour of

any 7-segment LEDs used.

To go with the first of these sliders, I thought that a speed monitor would be good to show the speed set

and after much deliberation decided that adding the day, date and time might be a nice feature and as a

demonstration of how to add these to a project. I also planned to demonstrate a couple of different

methods of producing ‘clickable’ buttons.

If you want to try making a similar interface, start by opening a new mBlock project file and then follow

the sequence of steps beginning on the next page. N.B. You will need to use your own (previously

created) graphics libraries to achieve this.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 101

Step 1: - Create the required project variables. This is

a marginally tedious task, but not too onerous.

Scratch variables are always displayed alphabetically,

so I decided to prefix all of them with logical sub-group

names (see the list on the right) so that individual

variables that related to specific tasks were displayed

together in the list making them easy to find when

adding them to individual sprite scripts later.

Make the complete set of 24 variables as shown on the

right (& they are also listed rather more clearly below):

Cal_Day, Cal_Month, Clock_Hours, Clock_Minutes,

Clock_Seconds, Digit_Hundreds, Digit_Tens,

Digit_Units, Digits_Shown, Digits_Size, Digits_Space,

Digits_Xpos, Digits_Ypos, mBot_Speed, Plus_Factor,

Sensor_Pos, Sensor_Value, Slider_Xpos,

Slider1_Switch_Pos, Slider1_Ypos,

Slider2_Switch_Pos, Slider2_Ypos, Switch1_Pos,

Switch2_Pos.

To make these, click on the ‘Variables’ choice in the

blocks menu and then click the ‘Make a New Variable’

button. Then type each of the required variable names

in turn and keep the default setting 'For all sprites' for

each of them.

Uncheck all of the tick boxes next to each variable name to hide their stage

monitors. This is now a good time to save your project with a suitable filename.

Step 2: - Next you need to create the complete

list of message names that need to be

broadcast between the device, mBot and

sprites on the stage (& vice-versa). To do this

go to the ‘Events’ section of the blocks menu. And use the ‘hat’ block ‘when I

receive’ shown here or the ‘broadcast’ block (in fact, either of these will do).

Click the down arrow to access the drop-down list and click on ‘new message’.

Type in the complete set of (20) messages shown on the left one after another

(these are also listed rather more clearly below):

Analogue_Pos, Change_LED, mBot_Backward, mBot_Forward, mBot_Lamp,

mBot_Left, mBot_Right, Move_Monitor, Move_Slider1, Move_Slider2,

Poll_Sensor, Power_Lamp, Send_Data, Sensor_Lamp, Stop_Motors,

Update_Clock, Update_Digits, Update_Speed, Zero_Digits, Zero_Pointer

Save your project again (you do need to do this on completion of every step).

mBot and Me
a Beginner’s Guide

Page 102 - mBot and Me - a Beginner’s Guide

Step 3: - Now is a good time to test some of the Messages defined in Step 2 earlier by broadcasting them

from the ‘Sprites’ tab to the ‘Devices’ tab to send control commands to mBot, so delete ‘Codey’ and

choose mBot as a new device and remember to go to the ‘Devices’ tab and click connect!

If you haven’t done so already, click on the ‘Devices’ tab. See the diagram below. Here you need to go

to the ‘Events’ section in the ‘Blocks’ area and drag the ‘when I receive’ hat block shown above onto the

‘Scripts’ area on the right of the screen. You need five of these in all and you can either drag more

across or duplicate four more from the original one you dragged across first.

Go to each hat block in turn and click the down arrow to access the list of messages - choose

‘Stop_Motors’ as the message for this block.

Next go to the remaining four hat blocks in turn and set the message for each as follows,

‘mBot_Forward’, next block ‘mBot_Backward’, next block ‘mBot_Left’ and finally ‘mBot_Right’.

They now need control (‘Action’) blocks adding to each of these hat blocks as shown in the diagram

above. The first (‘Stop_Motors’) block is straightforward. Choose the ‘stop moving’ block from the

‘Action’ section of the blocks menu and drag it across to connect with the hat block.

It is possible to use from the ‘Action’ section, the ‘move forward at power()’ block for the four

remaining hat blocks; changing ‘forward’ to ‘backward’, ‘left’ or ‘right’ as appropriate. I decided

however to use the rather more sophisticated action blocks (shown in the diagram above in Arduino

house-colour, sea-green). These are taken from the ‘Makers Platform’ extension, and if you haven’t

added an extension pack into mBlock before, is not a bad thing to try this right now.

Leave the default power setting at (50%) for now. Eventually, but not yet, you will need to replace this

percentage in all of these control blocks with the variable ‘mBot_Speed’. This is needed when you have

some way of changing the value of that variable (by adding and programming a slider control graphic).

Save your project once again.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 103

Step 4: - Click on the ‘Sprites’ tab. See the diagram below.

To test that mBot can indeed be controlled from the ‘Stage’ using sprites is actually very simple. All

you need are five ‘broadcast’ blocks taken from the ‘Events’ section of the blocks menu.

Do note that blocks in the ‘Events’ section are identical in both the ‘Sprites’ tab and the ‘Devices’ tab

whilst other block categories are not.

Give each of these ‘broadcast’ blocks message names matching the ones that you used for the five hat

blocks on the devices tab. You will note from the diagram shown below that I arranged each of these

blocks with the ‘Stop_Motors’ block in the centre with forward at the top, backward at the bottom and

left and right positioned accordingly. NO (green flag) hat blocks are needed above these to make this

work.

Just try clicking each broadcast block in turn to activate it. If mBot is connected, then it will move

accordingly and prove that sprites scripts can control devices!

Time to save your project once more.

Step 4: - I used my ‘Graph-Paper’ backdrop to lay-out the twelve principle sprites that are needed on the

interface. This layout is shown at the top of the next page. It’s not a bad idea to add these major

components now rather than add them one at a time later on as you start to write scripts for them. Doing

this now is a bit of a confidence boost too - it looks like you are beginning to have a working project at

last. Despite grumbling earlier about the resolution of the Scratch stage, I cannot fault the way that

mBlock 5 handles the resizing of sprite graphics with no apparent lack of quality!

First, I positioned the backing plate of my mBot Direction Controller (which I named ‘Backstop’) and

the Analogue Sensor Monitor on the centre line of the stage, setting the X & Y coordinates of these to

0,-80 and 0,90 respectively. My graphics also needed to be reduced in size to fit the stage layout; I set

the Size of both the backstop and the monitor window to 50. You will need to choose your own Size

settings (a percentage of actual image size) to match your own graphics. N.B. The X & Y coordinate

positions of all of my sprites (apart from the analogue pointer mentioned earlier) are set to the centre of

each graphic.

mBot and Me
a Beginner’s Guide

Page 104 - mBot and Me - a Beginner’s Guide

I positioned my ‘LED slider’ and my ‘Speed Slider’ backplate graphics on the horizontal centre-line,

setting the X & Y coordinates of these to -200,0 and 200,0 respectively and set the Size setting of each

to 90 (I created these just a little bit too large and they do need to remain close to their original size so

that the labelling is not distorted). I positioned the On/Off indicator lamp graphic and the Sensor

indicator lamp on the horizontal centreline too, setting the X & Y coordinates of these to -122,0 and

122,0 respectively and the Size setting of each to 25. So far, this seemed to be a pleasingly symmetrical

layout.

Next, I added the digital sensor monitor window at coordinates 125,150 and set its Size to 28. This was

followed by the longer thinner graphic for the digital speed monitor window set at coordinates 190,-138

with a Size setting of 24. The final monitor window was an even longer and thinner graphic for the

digital clock window, which was set at coordinates -165,-138 with a Size setting of 50.

Finally, I added the last indicator lamp graphic (to show when mBot is activated) and set its X & Y

coordinates to 125,-138 with a Size of 25 and last of all I addded my two individual switch graphics

above the other two indicator lamps seting the Power On/Off (Start/Stop) switch at -122,40 - Size 60

and the Sensor On/Off switch at 122,40 - Size 50. N.B. We will add the day/date ‘engraving’ and other

descriptive ‘engravings’ to the interface later! Delete the default ‘Panda’ sprite and use the ‘add new

Sprite’ button to add your own praphics to create something rather similar to this. Its once again time to

save your project file as usual to ‘My Projects’ in the ‘Cloud’.

Its not a bad idea at this stage to make a backup file too, by saving a copy to your computer rather than

just to your instant-access ‘My Projects’ storage area. Do this backup on a frequent basis too.

Sensor Monitor
(Analogue) Sensor Monitor

(Digital)

LED
Colour
Slider

Speed
Slider

Clock
Monitor

Speed
Monitor
(Digital)

Activate
Sensor Activate

Interface

mBot Direction Controller

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 105

Step 5: - Return to the Devices tab. It’s time to add the remaining device scripts that you need here. So

far you have created five scripts that you can eventually call using messsages to control mBot (you

tested these by clicking them in Step 3).

You should already have a

script to stop mBot’s

motors and four

directional scripts. Begin

by editing these last four

scripts, adding the variable

‘mBot_Speed’ into the little window at the end of each DC motor block - which by default holds a value

of 50 (%). Do this to all eight blocks in those four scripts (see the diagram above).

Next you need to make three new scripts to process and

then pass data from mBot to Sprites on the stage.

The first of these is shown here on the left. It is actioned

when it receives the message

‘Poll_Sensor’. Essentially it

takes the value that the

ultrasonic sensor is outputting

at that moment in time and rounds it to a whole number

between 0 and approx 400 - the maximum range of the

sensor, or therabouts (in centimetres).

Create the whole script as shown, and ignore why most

of the other blocks are there for now - all will become

clearer as the project develops.

The main thing of interest here

perhaps is that the script above

calls the next script that you need

to make - which is actioned when

the ‘Send_Data’ message is

received from that previous script.

This second script is shown here on

the right so you need to make this

next. The variable ‘Sensor_Value

now holds whole-number numeric

output from the sensor on mBot.

The first block in this script ‘Digits_Shown’ calculates and stores the number of digits that make up that

whole-number and the next three blocks then calculate the individual digit that needs to be displayed

when the sensor’s value is broken down into hundreds, tens and units - simple really. Finally, it

broadcasts a message to update the digits displayed on the stage and this all happens in real-time as the

sensor value fluctuates.

mBot and Me
a Beginner’s Guide

Page 106 - mBot and Me - a Beginner’s Guide

The third and final addition to the scripts needed here on the ‘Devices’

tab is shown on the right. You now need to make this too - it resets all

of the display digits on the stage to 0 and it then broadcasts the same

message as used in the previous script (‘Update_Digits’). N.B. Even

if some scripts broadcast message names where there there is not yet a

receiving script to action, this is not a problem. As is now usual at the

end of a step sequence, save your project file.

Step 6: - It’s time to think about creating scripts for each of your

sprites, but first, some notes about the mBlock sprites list in general.

This project requires a rather alarming 49 sprites in total (but 16 of these are text that can be quickly

created as needed using the mBlock graphics editor). Of the remainder, several are duplicates; notably

the fourteen 7-segment LED digits and the three indicator lamps. You should have already added the

first twelve principle project sprites (created in Step 4 earlier) and you should be able to see all of these

in the ‘Devices’, ‘Sprites’ & ‘Background’ categories panel on the left of the ‘Edit Page’ below the

‘Stage’.

You can alter the width of the stage area on the mBlock ‘Edit Page’ and this affects how many sprites

are displayed across the ‘Devices’, ‘Sprites’ & ‘Background’ categories panel below the stage. The

default width will show three sprite icons across this panel on the majority of desktop monitors, but only

one or two sprites wide on most laptop displays. My monitor displays seven rows of sprites without

having to scroll down the list; but a disadvantage of having a lot of sprites in a project, is that the new

sprite button is always last in the list and any new sprites are added at the bottom of the sprites list too.

Sprites can however be dragged and repositioned in this list very easily and placed in any order, but it

makes sense to have the ones you are currently writing scripts for near the top of the list and therefore

always visible; so getting used to dragging them into a sequence that suits you is not a bad idea.

One of the two sprites I suggested adding first was the analogue sensor monitor.

This in itself is purely a background sprite graphic added to provide realism for a

moving pointer rotating in response to feedback from mBot’s ultrasonic sensor. As

such, this technically does not need any scripts written for it in the ‘Scripts’ area

when it is the currently selected sprite (highlighted in blue with the ‘delete-me’ cross

on its top right corner. BUT - it does make sense and good practice to add a script

such as the one shown below on the right to EVERY sprite that you create.

This script stores the coordinates that you set when you positioned the sprite

accurately on the stage. x: 0 (exactly on the vertical centre-line) and y: 90

(90 pixels up from the horizontal centre-line of the stage). The ‘hat’ block

at the top and the ‘Motion’ block below it clearly indicate that if that sprite

is clicked (& inadvertently dragged on the stage) the sprite will always

return (go to) its home coordinates position and move behind everything

else. When you are experimenting with a project on the edit page then

moving sprites by mistake often happens; but do note that in full-screen ‘Presentation Mode’ it is not

possible to drag sprites (although you can click them to activate scripts).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 107

Step 7: - It would be no bad thing at this stage to test the ultrasonic feedback from mBot and then test an

analogue pointer on top of your meter graphic (the analogue sensor monitor). Start by switching to the

devices tab and clicking the ‘Connect’ button at the bottom of the left hand panel of the edit page.

Choose the ‘Sensing’ section of the ‘Blocks’ area and check (tick) the second block choice from the top.

This will turn on the following stage monitor:

This shows (if mBot IS connected!) the feedback from the sensor - try moving mBot left and right to see

the display change in real time.

Click on the ‘Variables’ section of the

‘Blocks’ area and do three things.

Check (tick) the boxes next to

‘Sensor_Pos’ and ‘Sensor_Value’ and they will then become visible on the stage, each with a value of 0.

Below them (still in the ‘Variables’ section find the ‘set (variable name) to (0)’ block. So, you don’t

need to drag this block from here on to the ‘Sprites’ area. N.B. It’s very useful to know that blocks

can be modified and activated whilst they are still in the Blocks area.

Choose ‘Sensor_Pos’ as the name inside the block and type ‘1’ to

replace ‘0’ in the little window at the end.

To activate it you need to click it somewhere that doesn’t action the name or the contents of the window.

Try clicking somewhere near the left-hand end of the block over the top of the word ‘set’. The block

will ‘blink’ and you will see that the ‘Sensor_Pos monitor window on the stage will change from ‘0’ to

‘1’.

The ‘Sensor_Pos’ variable is a simple binary ‘1’ or ‘0’ (on/off) switch eventually controlled by the

power switch sprite on the interface - for now, you have had to

manually provide the ‘1’ in the variable to allow the next test to

proceed. Try clicking the hat block at the top of the script you created

on the devices tab (this is shown here on the right).

If you look at this script you will realise that it does need ‘Sensor_Pos’ to equal 1 to proceed. Then it

takes the sensor feedback and rounds it to remove the decimal places after the integers and displays this

in the ‘Sensor_Value’ variable. Clicking the hat block should now show whole numbers fluctuating in

the ‘Sensor_Value’ variable monitor on the stage.

Pres the red ‘stop’ button below the stage to halt the script and save your project file.

Step 8: - To see this script fully working, you need to add a new sprite into the project - the meter

pointer described earlier on page 100. I drew mine in Word using just a filled red circle and a thin

red triangle added over the top of it; but this is such an easy thing to create, so you could just as

easily draw this as two vector shapes in mBlock 5’s costume editor. (See the diagram on the

right). The important thing about the pointer is its x, y position in the editor. It must have its

pivot point over the centre of the editor screen! Set your own size for this to match the size of

your meter graphic. The pointer needs three scripts creating on the sprites tab with the pointer as

the active sprite.

These three scripts are shown at the top of the next page.

mBot and Me
a Beginner’s Guide

Page 108 - mBot and Me - a Beginner’s Guide

Try running the ‘Poll_Sensor’ message by clicking the ‘hat’ block on the devices tab again. You should

now see the meter pointer fluctuate in response to mBot’s sensor. After this test, you can uncheck the

variable stage monitors to hide them and also uncheck the ‘Sensing’ monitor too.

Success, another confidence-boosting milestone - you now have graphical feedback from mBot!

If you have a problem with sprites not being visible despite the ‘Show’ sprite

switch being set to ‘on’ (e.g. the pointer sprite is behind the monitor sprite) then

use the two ‘Looks’ blocks shown on the right to change the layer (stacking)

order of your graphics. Remember this tip - at some point in the making of your

project you will certainly need it! Save your project file and back it up again.

Step 9: - The first sprite that I added in step 4 was the backing plate for the mBot

Direction Controller (which I named ‘Backstop’). This is shown here on the

right and is the next thing that you should select so that you can then add the

two following scripts to it:

I decided that the whole

backing plate (and not just

the ‘stop’ button in the

centre of it) should call the

‘Stop_Motors’ message on

the ‘Devices’ tab to halt

mBot.

This makes sense since the

whole area is an easier

target to hit when you want

to stop mBot in a hurry.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 109

The left-hand script of the two scripts shown at the bottom of the previous page repositions the sprite if

necessary (as discussed in step 6 earlier), it then simulates a switch by using the sound effect ‘Click’ and

dimming the graphic briefly (so simple, but very effective). You will need to find a suitable sound file

for this (online perhaps where you could search http://soundbible.com/ for something suitable). Finally,

this script broadcasts the message to stop mBot. The second script, on the right of these two scripts

essentially switches an indicator lamp from green to red (or vice-versa) to indicate that mBot has

stopped or started.

Save your project file.

Step 10: - It makes sense to add the four direction controlling arrow sprites

into your project next. Add an up-arrow (for forwards) at the top of the

backing plate, a down-arrow (for backwards) at the bottom and left and

right-arrows aligned with each other on either side of the backing

plate (for turn-left or right). Each of these needs to be positioned

precisely and sized to suit, so I set their coordinates as follows:

 Forwards arrow: 0, -20 & size 60

 Backwards arrow: 0, -140 & size 60

 Turn-Left arrow: -60, -80 & size 60

 Turn-Right arrow: 60, -80 & size 60

Each direction sprite now needs two scripts creating for it; and fortunately, these are nearly identical to

the two stop button scripts created in step 9 earlier, so there is a good and very easy method (described

below) which will enable you to copy these two scripts into the four direction-arrow sprites.

To do this you need to make the backing plate (stop button) your active sprite by choosing it in the

sprites list so that the two scripts you created earlier are visible in the ‘Scripts’ area. Make sure that you

can see your four direction-arrow sprites in the sprites list too by scrolling it up or down it as necessary.

Click the left-hand script of the two showing in the ‘Scripts’ area and drag it to the left. Keep dragging

across the ‘Blocks’ area until your cursor is over the sprites list. As you move across individual sprite

icons in the list, any icon under the cursor will rock slightly (or ‘wriggle’) to indicate that it is ready to

receive what you are dragging across. Let go of the dragged script when you are over the forward-

direction arrow sprite and it rocks from side-to-side. Click on that sprite to make it active and you

should see that the script that you dragged across has now been copied into it. Go back to the backing

plate (stop button) sprite and click and drag in the same way the second (right-hand) script across to the

forward-direction arrow sprite icon in the sprites list. Make this sprite the active sprite again and you

should see (but not very clearly this time) that the second script has also been copied; but has been

dropped on top of the first script. All you have to do now is drag the top script sideways slightly to

expose the first script and then reposition them neatly side-by-side. Repeat the process of copying the

two original scripts by dragging them to each of the other three direction arrow sprites. N.B. All of that

script copying & repositioning is much quicker to do than it seems in the lengthy description above!

You should now have the same scripts in both the backing plate (stop button) sprite and in the four

direction arrow sprites so you need to go to each of these four in turn and modify the blocks highlighted

to match the scripts shown below and on the next two pages. Note that you do need to delete the three

‘Looks’ blocks ‘go to (back) layer’ from each of these copied scripts.

http://soundbible.com/

mBot and Me
a Beginner’s Guide

Page 110 - mBot and Me - a Beginner’s Guide

First, here are the two scripts that you need to modify for the ‘move-forwards’ arrow sprite:

 Next, here are the two scripts that you need to modify for the ‘move-backwards’ arrow sprite:

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 111

Next, the scripts that you need to modify for the ‘move-left’ arrow sprite:

And finally, the two scripts that you need to modify

for the ‘move-right’ arrow sprite:

Make sure that mBot is still connected. If not, go to the ‘Devices’ tab and click the ‘Connect’ button.

You can now click your controller arrows on the interface and mBot should respond and change

direction with each click.

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

Delete go to back

layer from here

mBot and Me
a Beginner’s Guide

Page 112 - mBot and Me - a Beginner’s Guide

To make these scripts work you may need to set the ‘Sensor_Pos’ variable to 1 again (like you did in

step 7 to test the ‘Poll_Sensor’ broadcast) but you should by now be more-than satisfied with your

project since you now have both sensor feedback and directional control and have demonstrated that

two-way communication between a device and a stage interface is possible.

If you have achieved this, then very well done so far. Save your project file and back it up again too.

Step 11: - Buoyed up by the progress of your project so far, it’s time to think about digital feedback on

the your stage interface. In step 4 I suggested that you added the digital sensor monitor window at the

top right side of the interface (at coordinates x: 125,y: 150).

Click on this sprite in the sprites list and (if you haven’t done it already) name it ‘Sensor_Monitor’ .

This monitor sprite does need the two

scripts (as shown here on the right)

added to it. The first of these should by

now need no further explanation, whilst

the second is fairly easy to understand.

If it receives (as will all the other monitor windows in the

project) the message ‘Move_Monitor’ then it moves the monitor

graphic to the front layer (in front of any LED digits) and this

suggests that ‘power’ has been turned ‘Off’. Otherwise if the

power switch is ‘On’, then the monitor window is moved to the

back layer and the LED digits are once more visible (suggesting ‘powered-up’!).

It is here that you now need to add hundreds, tens & units digits to represent the LED feedback (in

centimetres)from mBots ultrasonic sensor.

N.B. You have already written a script on the ‘Devices’ tab to broadcast this data.

You now need to create a new sprite with ten individual costume graphics (1 to 9 and 0) so click on the

new sprite button at the bottom of the sprites list to enter the ‘Costumes’ library’. If necessary, upload

all of your digit graphics into the ‘My Costumes’ library first and then open from that library the number

‘1’ 7-segment LED (.png) file that you created using my instructions in Chapter 14 on pages 90 to 94).

Name this sprite ’Sensor_Units’ and set its coordinates to x:150, y:150 and size: 15.

You should now see your LED digit nicely positioned in the monitor window at the top of the interface.

Click on the ‘Costumes’ button at the bottom of the ‘Edit Page’ (next to the sprites list) to open the

costume editor and name this first costume as ‘Digit_1’. The grey strip between the costume editor

window and the stage / sprites list panel is the panel containing the list of costumes available to the

sprite currently selected.

At the top of this panel you will be able to see your ‘Digit_1’ graphic (and this will also be displayed in

the editor window too). At bottom of the costumes panel is a little blue icon of a cat’s head and the

words ‘Add Costume’. Click here and it will take you back to the costume libraries.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 113

Open your number ‘2’ graphic from the ‘My

Costumes’ library and name it as ‘Digit_2’.

Note that this will become the active

costume and both the editor and the monitor

on the stage will display the active sprite.

Add and rename the remaining graphics

until you have the sequence of costumes (1

to 9 and 0). You can see both the costume

editor window, the sprites list and the

costume list for the ’Sensor_Units’ sprite

here on the left. It is rather gratifying to

click up-and-down the costume list watching

the digit in the monitor window change as

you do so.

Close the costume editor, using the (X)

button that replaced the ‘Costumes’ button at

the bottom of the ‘Edit Page’. Add the two

scripts shown here (below right) to your new

’Sensor_Units’ sprite. The first script

positions the sprite; but rather than a value

being inserted into the block does so by

using data stored in variables ‘Digit_Xpos’ & ‘Digit_Ypos’.

This is quite a good

ploy to get used to

here, since you can

use another script to

alter these variables

to reposition the

‘Sensor_Units’ digit

(this is good practice

in other projects!).

The decision making

part of this script says

that if the variable

‘Digit_Units’ holds

the value ‘1’ then choose costume ‘1’ whilst if

‘Digit_Units’ contains ‘2’ then choose costume ‘2’ and so-

on.

However, costume ‘10’ of this sprite contains ‘0’; so, the

first bit of the script makes a decision to switch to that

costume if ‘Digit_Units’ holds a value of less than ‘1’;

otherwise it continues to choose the costume matching its

value!

Close

Editor
here

mBot and Me
a Beginner’s Guide

Page 114 - mBot and Me - a Beginner’s Guide

The second script shown on the previous page is made up of five simple ‘if / then’ decisions which

reflect the position of the slider button on the LED colour backplate.

N.B. Once you have added the first of these five ‘if / then’ blocks (and added the completed green

‘Operators’ block and the purple ‘Looks’ block to it, you can duplicate it four more times and change

the colour effect number and the switch value number for each ‘If’ decision in turn.

A switch value of 5 sets the LED to yellow, a value of 4 to Red, a value of 3 to Purple, a value of 2 to

Cyan and a value of 1 returns the colour change to 0 (reverting the LED to its original colour, Green).

Without the slider switch values being set you can’t see the results of these changes by testing this script

yet; but, if you want to see what they look like, then find the ‘set (colour) effect to ()’ block in the

‘Looks’ menu, type in one of the values above and click the left-hand end

of the block (over the word ‘set’) and you will see your 7-segment LED

graphic in its monitor window on the stage change colour.

That’s quite a lot of work that you have just added, so it makes sense to save your project file once

again.

Step 12: - You now need to add the remaining two digit sprites; ’Sensor_Tens and ’Sensor_Hundreds’.

This is not nearly as much work as in step 11 above, since both of these are essentially duplicates of the

‘Sensor_Units’ sprite that you have just made - and best of all, remember that duplicated sprites contain

the same scripts as their parent sprite!

Go to your ‘Sensor_Units’ sprite in the sprites list and right-click it. You are given the choice of

‘duplicate’ or ‘delete’ so click on ‘duplicate’ and avoid clicking on ‘delete’! You will see a new sprite

(added to the bottom of the sprites list) labelled ‘Sensor_Units2’ - rename this as ’Sensor_Tens’.

Duplicate this once again and label it as ’Sensor_Hundreds’. You might at this stage do as I did and

reposition the order of these digit sprites in the sprites list, sensibly putting them into the standard

mathematical sequence of hundreds, tens and units.

Each of these sprites will have the ten individual costume graphics (1 to 9 and 0) as in the parent sprite

and they will also contain the two scripts that you created for the parent sprite in step 11.

The very good news is that the ’hat’ block ‘when I receive (Change_LED)’ script is identical for all three

of your digit sprites; and since you do want them all to change colour, so there is nothing to change here.

Both of the ‘hat’ block ‘when I receive (Update_Digits)’ scripts in your two duplicated sprite scripts

need to be marginally altered to reposition these new digits to the left of the ‘units’ digit and to choose

the costume matching the tens and hundreds variables.

To do this, go to each of these new scripts in turn and in the two places where each of

these scripts refer to the ‘Digit_Units’ variable replace them with the ‘Digit_Tens’ and

‘Digits_Hundreds’ variables as appropriate for each script.

See the contents of these two scripts on the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 115

The modified script for the ’Sensor_Tens’ sprite

is shown here on the left.

The ‘go to x: () y: () ‘ block needs to be modified

as shown on the left to include an ‘Operator‘

block ‘() minus ()’ added into the x: window which shows the

‘Digits_Xpos’ variable first with a variable called ‘Digits_Space’

being deducted from it.

The resultant x position is therefore less than it was for the x

position of the ‘Sensor_Units’ digit and moves the ’Sensor_Tens’

digit a pre-set distance to the left. In the script shown below (for

the ’Sensor_Hundreds’ sprite) then this value is doubled

(multiplied by 2) to position that digit using twice the value of

‘Digit_Space’ moving it to the left and leaving room for the ‘tens’ digit in the middle).

This all ties in with a principle that you can use in other projects; this good practice concept was hinted

at in step 11 earlier and suggested that using data stored in the variables ‘Digit_Xpos’ & ‘Digit_Ypos’

(and also in the value of the variable ‘Digit_Space’) rather than a value being inserted directly into the

block will allow another script to alter

these variables and thus reposition these

digits as required. This time, the block

modification requires a (minus)

‘Operator‘ block inside the first window

of a (multiply) ‘Operator‘ block.

Since these variables have not yet been set, you might want to

manually position and size these last two sprites. Set the ‘Tens’

sprite to position 125,150 and the ‘Hundreds’ sprite to 100,150.

You now need to return to your ‘Sensor_Units’ sprite and add

another little script that can set these variables. Remember that

it is sensible to always create a sprite script enabling it to

reposition itself (as discussed in step 6 earlier).

In this case this is a rather different, but very valuable method.

To enable the ’Sensor_Tens’ and ’Sensor_Hundreds’ digits to automatically position themselves to the

left of the ‘Sensor_Units’ digit you need to set the values of the variables ‘Digit_Xpos’, ‘Digit_Ypos’ &

‘Digit_Space’. This creates a thee digit number that can be easily repositioned - move the units digit,

and they all move! You may also find this concept of considerable value

in other projects.

Go to ‘My Blocks’ in the blocks list and create a new block called

‘Digit_Pos’. Then use three Variables ‘set’ blocks to set the positional

values as shown in the diagram on the right (you might want to

experiment with your own ‘Digits_Space’ value here).

mBot and Me
a Beginner’s Guide

Page 116 - mBot and Me - a Beginner’s Guide

Finally, you need to modify the ‘hat’ block ‘when I receive

(Update_Digits)’ script (as shown here on the left) by adding your

newly defined ‘Digit_Pos’ block to it. Drag the block across and

position it at the top of the script between the ‘hat’ block and the

‘go to x: () y: ()’ block.

To test that these scripts work, go to the ‘Events’ blocks menu and find the ‘broadcast (message)’ block.

Choose ‘Poll_Sensor’ in the messages list and then click the left-hand end of the block to broadcast the

message. You should now see your three digits react to match the sensor feedback from mBot. You

will also see your analogue pointer fluctuate to (just like it did when you first tested it in step 8).

 If this doesn’t seem to work, check the ‘Devices’ tab scripts that you created in step 5 carefully

(particularly the ‘Send_Data’ script that breaks up the ‘Sensor_Value’ into the individual digits that you

are trying to display here).

Save and backup your project file once more.

Step 13: - It’s time to programme the right-hand of the two switches on the interface

that we added in step 4. You could use just about any graphic of your own for this.

I named this graphic ‘Sensor_On/Off’ and it only has one costume, relying on using

the 'change (brightness)' block (demonstrated in step 9) to give an impression of

interaction by dimming it briefly and making a ‘click’ sound whenever it is clicked.

This sprite has only one costume, but it still toggles 'On' & 'Off' in the same way as a two-costume

(moving/changing graphic) sprite would. The ‘when this sprite clicked’ script shown on the next page

essentially sets an 'On' position (1) for a first click and an 'Off' position (0) after a second click of the

same sprite graphic. The ‘Sensor_Pos’ variable enables the ‘Sensor_Lamp’ sprite to toggle between its

two costumes, showing a red lamp for ‘Off’ and a green lamp for ‘On’.

There are in fact two scripts,

the second one being a good

use of a self-defined (or

custom) ‘My Block’. Since

the same bit of scripting

(added under the ‘My Block’

‘hat’ called

‘Operate_Switch’) is used

twice, it makes sense to only

write this once and then just

add the single

‘Operate_Switch’ block into

either half of the main

script). This shortens what

would have been a long

script to see without

scrolling it up and down.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 117

When you try test-clicking the switch sprite on the interface for the first time you should see (if mBot is

connected, that is!) the digital feedback revert to 000 and the analogue pointer drop to 0 when the switch

is ‘Off’ and then real-time sensor data displayed on both when the switch is clicked to ‘On’.

Save your project file.

Step 14: - The aforementioned ‘Sensor_Lamp’ sprite needs to be programmed next to complete this part

of the interface involving mBot’s ultrasonic sensor. This is a very simple and speedy modification, as

long as you have the costumes for it ready-made and uploaded into your ‘My Sprites’ library.

The ‘Sensor_Lamp’ sprite needs to have two costumes; costume 1

is a red lamp graphic and costume 2 an identical lamp but with the

centre (‘bulb’ part) green. Chapter 14 (page 95) gives a clue in

how to draw these in Word.

The script attached to this sprite (shown here on the right is very

straight-forward and easy to understand. If the switch has a value

of ‘1’ (‘On’) then show the green lamp and if the switch is

anything else, then show the red lamp (‘Off’).

Try clicking your ‘Sensor_On/Off’ button sprite on the interface

once again and as well as the sensor feedback being turned on or off you should also see the Lamp

changing from green to red and red to green each time that you click it.

Save and backup your project file once more.

Step 15: - It probably makes sense to next undertake the

programming for the other (left-hand) switch on the interface, the

‘Power_On/Off’ switch.

This is a two-costume (moving/changing graphic) sprite which sets

an 'On' position (1) for the first costume and an 'Off' position (0) for

the second costume of the sprite.

There are initially two scripts that need to be created here and these

are very similar to the scripts created for the right-hand switch sprite

detailed in step 13 previously. These are shown here on the left.

mBot and Me
a Beginner’s Guide

Page 118 - mBot and Me - a Beginner’s Guide

You need to make this second switch script next. This is once again a self-defined ‘My Block’ also

named like its predecessor, ‘Operate_Switch’.

There will eventually be a third ‘My Block’ script ‘Start_Clock’ added to this sprite - but other than

adding the block name as shown in the diagram at the bottom of the previous page, not just yet. This

additional script will be fully completed when the digital clock is eventually created to finalise the

interface.

When this ‘power’ switch is in the 'On' position it allows all the other button sprites to work and

eventually will also activate the 'Start_Clock' display routine. When this switch is in the 'Off' position it

stops the clock and deactivates all of the other button sprites.

Most importantly this script also broadcasts the ‘Move_Monitor’ message which repositions the three

monitor window graphics to the front layer (in front of the three LED displays) to simulate the effect of

the LEDs being turned off.

Step 16: - To enable all of the monitor windows on the interface

to be moved to the front as described above, they each need the

same script attached to them. This script is actioned when the

‘Move_Monitor’ message is received.

Go to your ‘Sensor_Monitor’ sprite and create the script shown

here on the right then drag this script across into the sprites list

to duplicate it into your both your ‘Speed_Monitor’ sprite and

your ‘Clock_Monitor’ sprite.

Now when you test-click your ‘Power_On/Off’ switch on the

interface you should see any digits in the sensor monitor window being hidden and then reappearing

when the switch is clicked once again as well as the costume of the switch sprite changing from the

‘Start’ button to the ‘Stop’ button.

It makes sense to also write the usual repositioning script for all three

monitor windows, so return to the ‘Sensor_Monitor’ sprite and create the

script shown on the right. Drag (as you have done before) to duplicate

this on both your ‘Speed_Monitor’ sprite and your ‘Clock_Monitor’ sprite

and adjust the x: and y: coordinates accordingly for each of them.

Step 17: - To complete the effect of the switch that you

programmed in step 15 earlier, it now needs the ‘Power_Lamp’

sprite positioned below it to be programmed.

Create the script shown here on the left and then test-click the

‘Power_On/Off’ button on the interface again - all should work as

before with the addition of the lamp being switched from red to

green and vice-versa. You should be buoyed-up with your

successes once again, so save and backup your project file.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 119

Step 18: - Sliders are a quick way of altering the values stored in a variable and are so useful, that one of

the three monitor windows that can be made visible on the stage to show the contents of a variable is the

horizontal slider shown here on the right. The slider button can be dragged

either left or right to anywhere on its track and the value can be set (in

incremental values of 1) from 0 on the left to 100 on the right.

Sliders such as this are hard to emulate well in an mBlock stage graphic for several reasons.

The first reason being the fact that although sprites on the stage can be dragged, moved and clicked

when you are working in the ‘Edit’ page, they cannot be moved in full-screen ‘Presentation Mode’

where only clicking a sprite is possible. This rules out dragging a slider button up and down (or across)

a slider track.

Secondly, you need a way of analysing exactly where the slider button is on its track and in the example

above, you would need to create 100 rather complex decision making scripts to work out the value

indicated by a slider buttons position.

Thirdly, it’s a complex decision to decide where to position a slider on the stage.

Remember, the zero position for the x and y coordinates of any sprite is in the centre of the stage;

therefore, only sprites in the upper right quadrant of the stage have positive integers and calculating with

negative numbers is difficult.

In the lower left quadrant of the stage, both x and y coordinates are negative integers whilst in the other

two quadrants, one of the coordinates (x or y) will be a negative integer.

For the two vertical sliders that I had in mind for this interface (a LED Colour Changer and a Speed

Changer) I decided that there only needed to be five stopping places for the button on each slider e.g. in

the 0 to 100 scenario described earlier this only need a calculation for every 25 points 0,25,50,75 & 100

and not one calculation for each of 100 stopping points!

After much deliberation and experimentation, I found that in

the ‘Motion’ blocks menu there were two ‘Reporter’ blocks

labelled ‘x position’ and ‘y position’ and if you ticked the

checkbox next to them then this turned on labelled monitor

windows on the stage showing the position of the current sprite; and if you

dragged the sprite across the stage then these coordinates changed. What, I

speculated - could the y position of a sprite be copied into another variable

using the ‘Reporter’ block value at that moment in time whenever that sprite

was clicked, and that value be used make a decision?

Yes, this was the key to solving the problem and if the sprite in question was the slider’s backplate

and not the button then a range of values 0 to 25, 25 to 50, 50 to 75 and 75 to 100 could be used.

If the backplate sprite was clicked somewhere in the 50 to 75 range for example (an actual y pos.

click = 68) then the y position could be told to accurately jump to the next higher value (75) and

the button sprite could move to that position too. Problem basically solved! The button on the

slider needs to be just a graphical adornment - not actually working but just pretending to be the

operating bit of the slider.

mBot and Me
a Beginner’s Guide

Page 120 - mBot and Me - a Beginner’s Guide

The long ‘My

Blocks’ script

shown here on the

left uses this

calculation concept

for the ‘LED Slider’

backplate (which is

positioned on the

left-hand side of the

interface) - an

image of this is

shown here on the

right.

In addition to the

‘My Blocks’ self-

defined block script called

Make_Slider_Choice’ shown here

on the left, a second script (shown

at the top of the next page) was

also created to activate the

‘Make_Slider_Choice’ script.

The first bit in this ‘when this

sprite clicked’ script checks to see

if the ‘power’ switch has been

activated and if not just repositions

the sprite and makes sure that it is

at the back (& therefore always

behind the slider button).

The main part of this script is the

‘else’ decision part which only

works when the power switch is

‘On’. The crucial bit here is

setting the slider y pos. variable to

the y position of the mouse pointer

at the moment when it was clicked

(exactly as outlined in the basic

concept outlined on the previous

page).

There is a new addition to this script. It uses an ‘Operators’ block to add the value contained in a

variable called ‘Plus_Factor’ to the value of the y pos. variable - but more about this shortly.

The last bit of this script repositions the sprite if necessary and then calls the self-defined block

‘Make_Slider_Choice’ script shown above.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 121

On the left is the ‘when this sprite clicked’

script discussed at the bottom of the

previous page which calls the

‘Make_Slider_Choice’ script (also shown

and described on the previous page).

The ‘Make_Slider_Choice’ script is made

up of five separate ‘If’ decisions one for

each area of the slider (but there is also a

sixth decision at the end - more about that

later too).

Each decision determines (from the top of

the slider downwards) if the captured y pos.

click of the mouse on the sprite is in

between a range of figures and if this is true

then it sets a specific new value for the y

pos. variable and sets a specific value on

which the slider button can be positioned.

If the captured y pos. click of the mouse on

the sprite is NOT in between the range of

figures specified, then it is ignored and the

action jumps to the next ‘If’ decision

checking the next range of figures down the slider sprite. This is repeated until the fifth if decision is

reached and checked.

One of these five ‘If’ decisions will have set the new value for the y pos. variable and a specific value for

the slider button position. So finally, the bottom block will be activated to broadcast the message to

move the slider button.

Why is there a sixth ‘If’ decision at the bottom (before the broadcast block)? - This decision looks at the

slider value variable and if it contains 80 it bumps it up to 100 (and is otherwise ignored if the variable

contains any other value). This was a ‘workaround’ I had to invent to correct a problem with the

topmost ‘If’ decision.

When this decision is true, it sets the slider value to 80 (but this really needs to be set to 100 to position

for the button correctly) BUT if 100 was the value returned by this script decision then the slider would

just not work - but why not? I guess that my Scratch programming prowess was just not good enough to

solve this. However, checking the value and changing it again using the sixth ‘If’ decision worked - and

I have no idea why!

Why the need for adding a ‘Plus_Factor’ value of 200 to the y pos. variable? - Setting the ‘Plus_Factor’

to 200 and then adding it to every y position turns all negative integers into positive ones which are

much easier to calculate. (-180 is the lowest y position on the stage) so setting the ‘Plus_Factor’ to 180

would work to create positive values; but a round value of 200 makes the values much easier to

understand.

mBot and Me
a Beginner’s Guide

Page 122 - mBot and Me - a Beginner’s Guide

If you understood all of that, you can now write the ‘when this sprite clicked’ script and the ‘My Blocks’

self-defined block ‘Make_Slider_Choice’ script for your ‘LED_Slider’ sprite.

You can then carry on by making the next very short script too. Creating the ‘when I

receive message’ script for the ‘LED_Slider_Button’ (shown here on the right) is by

comparison very simple indeed.

This script makes very good use of the ‘Motion’ block

‘glide to x: () y: ()’. The y position uses the value

contained in the slider y pos. variable.

If you do click and drag the ‘LED_Slider_Button’ by

mistake, it can move out of its slot-line until you next

click on the slider backplate to reposition it.

In this case (because the button has to move when instructed by the

script above) you cannot use the usual sprite repositioning trick that

you have used for all other sprites. All that you have to do is to add

the simple one-block script (shown here on the right) to the

‘LED_Slider_Button’ sprite and this will stop it from being dragged.

When I tested this project on my surface laptop (which has a touch screen) there was a totally

unexpected but massive bonus! I tried operating the sliders with a finger on the screen and not using a

mouse and if you swipe, push or pull the slider button with a finger it really looks as though you are

moving the slider button - but in reality, your finger position when you remove it from the screen is the

last known y pos. and the button glides to that position!

In step 11 you created a script called ‘Change_LED’ and added it to each of the three (hundreds, tens &

units) 7-segment LED digit sprites that you made to provide digital feedback from mBots sensor.

This script uses the value of the ‘Slider1_Switch_pos’ variable that is set by the ‘Make_Slider_Choice’

self-defined block script that you have just created.

A ‘Slider1_Switch_pos’ variable value of 5 sets colour effect of the LEDs to yellow, a value of 4 to Red,

a value of 3 to Purple, a value of 2 to Cyan and a value of 1 returns the colour effect to 0 (reverting each

LED to its original colour, Green).

If you try clicking in the zone below each of the colour names on the slider backplate then the

‘LED_Slider’ button will move to stop at that colour name and the colour of the three LED digits in your

sensor monitor window will change too.

Remember that if you click and drag the ‘LED_Slider_Button’ nothing will happen!

As usual, this is a good time to save and backup your project.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 123

Step 19: -

Now that you have completed

the previous step and have

created one working slider (and

understand the principle of how

it works) you can programme

the second one which will

enable you to adjust mBots

motor speeds easily.

I named my Speed Settings

Slider backplate as

‘Speed_Slider’.

You need to copy the two

scripts from your LED_Slider

across to this sprite by using the

dragging-across method

described in step 10 earlier.

They only need a few

modifications for them to work

with your second slider.

The ‘when this sprite clicked’ script is easy (see above) there are only 4 things to modify. In the two

blue ‘go to x: () y: ()’ blocks, change the value of x in each from -200 to 200 and then change the value

of the orange ‘set (Slider_Xpos)’ block from -200 to 200.

Change the variable name in the orange block below the blue ‘go to (mouse-pointer)’ block where it

says ‘set (Slider1_Ypos)’ and change this to the (Slider2_Ypos) variable name. In the

‘Make_Slider_Choice’ self-defined block script, there are more changes, but these are even easier to

make (this script is shown on the next page).

In the six ‘If’ decisions in this script there are eleven orange ‘reporter’ blocks which report the contents

of the ‘Slider1_Ypos’ variable. Delete all of these and replace them with new orange ‘reporter’ blocks

reporting the contents of the ‘Slider2_Ypos’ variable.

At the very end of the six ‘If’ decisions in this script is a broadcast block calling the ‘Move_Slider1’

message. Change this to call the ‘Move_Slider2’ message instead and the scripts for the ‘Speed_Slider’

backplate sprite are now complete.

As usual, save and backup your project.

mBot and Me
a Beginner’s Guide

Page 124 - mBot and Me - a Beginner’s Guide

On the left is the ‘Make_

Slider_Choice’ self-defined block

script for the ‘Speed_Slider’ (as

described on the previous page).

Creating the ‘when I receive

message’ script for the

‘Speed_Slider_Button’ is slightly

more complex than the script for

the ‘LED_Slider_Button’ described

earlier.

The script to move the

‘Speed_Slider_Button’.

is shown at the top of the next page

and once again uses a ‘glide’ block

and a ‘sound’ block (in exactly the

same way that the script that you

created for your

‘LED_Slider_Button’ did).

However, the new ‘Move_Slider2’

script also needs five ‘If’ decisions

added to it to (for each of the five

stop positions on the slider) to set

individual speeds for mBot.

After creating it try clicking in the

zone below each of the speed

settings on the slider backplate.

The ‘Speed_Slider’ button will

move to that speed-stop setting.

Add to the ‘Speed_Slider_Button’

the same one-block script that you

used before to prevent it from

being dragged by mistake.

Connect mBot and try it out.

It’s time to save and backup your project once again too.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 125

The ‘Speed_Slider_Button’ script described on the previous page is shown below:

Finally, this step would not be complete without some

useful facts about Makeblock’s motors and speeds:

In mBlock 3, mBot’s motors

needed a minimum speed setting

of 70 / 255 to drive devices

without labouring. In mBlock 5

the power setting now uses

percentages - a speed setting of 70

/ 255 in mBlock 3) = 27.5% in

mBlock 5.

Speed ‘70’ does not however reflect the real running

speed value.

mBot’s Real Running Speed is dependent on both voltage

and speed values and the calculation for this =

(set speed / max speed) x (battery voltage / motor

voltage) x motor no-load speed

The power supplied through mBots battery is 3.7V (fully

charged) and the DC motors have a rated voltage of 6V

(but individual motors do vary a bit in actual power

output).

mBot motors have a gear ratio of 1:48 and run at a no-

load speed of 200 RPM (± 10%).

The max. speed of these motors is 255.

At speed 100 (40%) mBots Real Running Speed = 0.392 x 0.617 x 200 = 48 rpm.

 At speed 70 (27.5%) mBots Real Running Speed = 0.275 x 0.617 x 200 = 34 rpm.

 At speed 50 (20%) mBots Real Running Speed = 0.1961 x 0.617 x 200 = 24 rpm.

A speed setting of 50 is about 20% power, but to drive mBots motors slowly but adequately 30% power

is rather more realistic; and a speed setting of 100 (which equates to 40%) is a very good speed for mBot

control.

My own mBot veers to the right very slightly: - So to correct this I experimented with adding 2% of

extra power to the right-

hand motor (connected to

motor port M2) - this script

modification worked very

well.

mBot and Me
a Beginner’s Guide

Page 126 - mBot and Me - a Beginner’s Guide

Step 20: - The last block added to the ‘Speed_Slider_Button’ script shown on the previous page is a

broadcast block. The message it is broadcasting is ‘Update_Speed’. This has not been written yet and

needs to be added to three new LED digit sprites which need to be created and displayed in the speed

monitor window below the Speed Settings Slider.

You already have three LED digit sprites named ‘Sensor_Hundreds’, ‘Sensor_Tens’ & ‘Sensor_Units’

which you can duplicate and rename the duplicates as ‘Speed_Hundreds’, ‘Speed_Tens’ &

‘Speed_Units’. You have duplicated sprites before, so go to the sprite pane on the left of the edit page

and right-click on each of your sensor LED sprites in turn and choose ‘duplicate’ from the drop down

list. Name each new sprite as described above.

Each of these new sprites will have the scripts from its parent sprite attached. In each of your new

‘Speed’ sprites you need to keep the ‘when I receive (Change_LED)’ script so that the colour of each of

these new LEDs can still be changed with the colour slider.

Delete any other scripts in each of these new ‘Speed’ sprites in readiness to create the three new ‘when I

receive (Update_Speed)’ scripts mentioned above.

Start with your new

‘Speed_Units’ sprite and

create the short script shown

on the right. Note that there

are no decisions to be made

on this sprite since all of the

speed settings end in zero -

so the script just positions

costume ‘Digit 0’ accurately in the monitor window.

Next you need to modify the programming of your

‘Speed_Tens’ sprite.

In addition to the ‘when I receive (Change_LED)’ script that

you left behind; you now need to create the decision making

script shown on the left which will set the middle (‘tens’) digit

on the display to the required costume for each speed setting of

the slider.

N.B. These costumes only need to display either ‘5’ or ‘0’.

Finally, you need to go to your ‘Speed_Hundreds’ sprite where

once again you should still have the ‘when I receive

(Change_LED)’ script that you left behind.

You now need to create another decision making script (shown

at the top of the next page) which will set the left (‘hundreds’)

digit on the display to the required costume for each speed

setting of the slider.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 127

This is the ‘when I receive (Update_Speed)’ script

required for the ‘Speed_Hundreds’ sprite.

Note that the last decision in this script (checking if the

speed is set to ‘50’) shows the ‘switch costume to ()’

block set to ‘Blank’. This is an additional costume

which is required here to show nothing if (as in this

case) a ‘hundreds’ digit is not required.

To create this, it is very simple. Just go to the costumes

editor and add another costume and name it ‘Blank’ and

then immediately close the costume editor. No painting

required, because as its name implies, it contains

nothing.

Move your speed slider button by clicking just below

each speed setting on the backplate and you should see

the display change to match the chosen speed.

You already should have tested the speed settings with

mBot in step 18; but if you want, you can connect mBot

and test them again right now, but first (and as usual at

every stage) you should …

… Save and backup your project once again.

The main component parts of the interface have nearly

all been programmed and the only item that you initially

installed on your interface screen and which is not yet

working is ‘mBot_Lamp’. This is the third indicator

lamp which is positioned just to the left of the speed monitor window which shows a Red lamp 'Off' (0)

for the first costume or a Green lamp indicating 'On' (1) for the second costume of the sprite graphic.

Step 21: - Go to the ‘mBot_Lamp’ sprite and add the short script

shown here on the right. This is another two-way toggle routine of

two sprite costumes and is linked to the position of the 'Start/Stop

Switch' switch.

You have already added the ‘broadcast (mBot_Lamp)’ block to

each of the four direction arrows and the stop backplate for

controlling mBot; so, if you connect mBot and test this now you

should see the indicator lamp turn green when mBot is moving and

turn red when mBot is inactive - this is not vital, but it does add

another nice graphic touch.

Save and backup your project once more.

mBot and Me
a Beginner’s Guide

Page 128 - mBot and Me - a Beginner’s Guide

Step 22: - As I mentioned at the beginning of this chapter, I decided that adding the day, date and time

to my interface might be a nice feature and provide a demonstration of how to add these as graphic

output to any project. The 'workings' of the clock rely on the ability of scratch to extract the sub-

component parts of the current date (day, month, year) and the current time (hour, minute & second)

from the time clock built into all computer

systems.

The clock needs a slightly lengthy but not

complex script to be created somewhere in

the interface project to extract the data from

these sub-component parts and store them in

variables that can be easily called upon to

display suitable output on the interface.

This sort of script would often be triggered

by a 'Green-Flag' event but I decided that

since the clock on my interface would be

activated by clicking the 'Power_On/Off'

button then this script should be attached to

the power-button sprite.

You need to return to your 'Power_On/Off'

sprite which you created and scripted in step

15. Here you created two self-defined 'My

Blocks' - 'Operate_Switch' to which you

added the scripting it needed to work and

'Start_Clock' which you only defined as a

name with no scripting blocks added below

the red (automatically created) 'hat' block.

The 'Start_Clock' script needs to work

‘forever’ so all of the other blocks in this

script need to be inside a ‘forever’ loop ‘C’

block. Inside it you then need five

‘if/then/else’ decisions to create the data

needed for each of the variables required to

store date & time information. The clock

always needs to store two digits in each

variable so each decision checks to see if the

value is less than ten and adds a leading zero

if it is needed.

The single ‘reporter’ block

needed for each sub-component; is from the

‘Sensing’ blocks menu (it’s default setting is

‘year’) - you just choose the name of the

sub-component you require from the drop-

down menu inside the block.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 129

Once you have completed the first ‘if/then/else’ decision block (extracting the hour part of the current

time) then it is very quick to duplicate it four more times and modify the contents of each to match the

script shown on the left of the previous page. The final block that you need to add (inside the ‘forever’

loop) broadcasts the message to update the clock.

If you want to test that this script works, go to the ‘Variables’ part of the blocks menu and check the

tick-boxes next to the following variables: ‘Cal_Day’, ‘Cal_Month’, ‘Clock_Hours’, ‘Clock_Minutes’

and Clock_Seconds. These variable monitors will now be visible on the stage. Click the ‘hat’ block

'Start_Clock' above where you have just added the decision blocks to extract the sub-components of

your computer systems time clock. The whole script will ‘light up to show that it is running ‘forever’

and you will see that each of the variable monitors on the stage now contains the data showing the day

(date) and month and the current hour minute and second. Click the ‘hat’ block again and the script will

no longer be running. Click the ‘hat’ block once more and you should see the second and possibly

minute variables update themselves. Click repeatedly, and you’ve got yourself a simple clock; and

unless you are doing this at midnight, you will not see the day or year change value!

Save and backup your project file.

Step 23: - Once you have the appropriate variables containing the date and time information that you

need; you can get to work on creating digital output to display them in a meaningful way.

To display the time using 7-segment LED digits in the ‘Clock_Monitor’ window that you added to your

interface is a comparatively easy task. To do this you need six separate digits and two spacers (colons)

to display the clock in the format: 00:00:00. Go to your original ‘Sensor_Units’ sprite in the sprites

pane and duplicate it and rename it as ‘Hours_Tens’ - this new sprite should contain all of the costumes

you added (1 to 9 and 0) and it should also have duplicated the three scripts ‘when I receive

(Change_LED)’, ‘when I receive (Update_Digits)’ and the self-defined ‘My Blocks’ ‘Digit_Pos’ script.

Delete the last two of these scripts but keep the

‘when I receive (Change_LED)’ script which will

enable the new digit to change colour when the

colour slider is operated. You then need to create

the very short script shown on the right. This

positions the digit sprite in the correct position in

the monitor window and chooses the correct

costume to match the first digit of the current hour.

Since you have duplicated the existing sprite, it will probably be set to the same size (15% in my case)

but you will need to set the position of this sprite to x: -214 and y: -138 (and you may also need to move

it to the front layer in front of the clock monitor window to enable you to see it). You can now duplicate

your new ‘Hours_Tens’ sprite containing both scripts five more times to make the six sprites required

for the clock. Re-name each of the five newly duplicated sprites as:

‘Hours_Units’ positioned at x: -197 and y: -138,

‘Mins_Tens’ positioned at x: -173 and y: -138,

‘Mins_Units’ positioned at x: -156 and y: -138,

 ‘Secs_Tens’ positioned at x: -132 and y: -138,

‘Secs_Units’ positioned at x: -115 and y: -138

mBot and Me
a Beginner’s Guide

Page 130 - mBot and Me - a Beginner’s Guide

You should now see all six LED sprites positioned in groups of two inside the

clock monitor window. If not, remember to use this block for each sprite in turn:

The ‘Hours_Units’ sprite needs its script amending as

shown on here on the left. This script positions the sprite

in the correct position in the monitor window and chooses

the correct costume to match the second digit of the

current hour.

The ‘Mins_Tens’ sprite needs its script amending as

shown on here on the right. This script positions the

sprite in the correct position in the monitor window and

chooses the correct costume to match the first digit of

the current minute.

The ‘Mins_Units’ sprite needs its script amending as

shown on here on the left. This script positions the

sprite in the correct position in the monitor window and

chooses the correct costume to match the second digit

of the current minute.

The ‘Secs_Tens’ sprite needs its script amending as

shown on here on the right. This script positions the

sprite in the correct position in the monitor window

and chooses the correct costume to match the first

digit of the current second.

The ‘Secs_Units’ sprite needs its script amending as

shown on here on the left. This script positions the

sprite in the correct position in the monitor window and

chooses the correct costume to match the second digit

of the current second.

If you click a couple of times on the ‘Power_Switch’ on your interface, first on and then off; you should

see ‘working’ clock digits appear and disappear accordingly and if you move the colour slider you

should also see the colour of the LEDs change. The ‘Power_Switch’ does stop the clock script too when

it is in the ‘Off’ position. Finally, you need to create two new sprites (colons) to act as separators (:)

between hours & minutes and minutes & seconds. You should have created a suitable colon graphic at

the same time as you created your numeric digits - the colon should be in the same style too. I made the

punctuation set

shown here on

the right:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 131

To add the two required separators, add a new sprite and add the colon image from your sprites library

(or upload it into the library from your .png files first). Name it ‘Seperator_1’. Set its size to 15% and

its coordinates to x: -185 and y: -138.

The colon separator could just be positioned by setting the

above coordinates, but it make sense to adopt the method of

always checking its position by adding the short script shown

here on the right. You also need to add to this sprite the ‘when

I receive (Change_LED)’ script which will enable the separator

to change colour when the colour slider is operated; so go to

any of your other LED digit sprites and drag a duplicate of that

script across to this sprite.

Next, you need to create the second separator sprite, so just right-click on ‘Seperator_1’ in the sprites

list and click duplicate. The duplicate will automatically be renamed as ‘Seperator_2’. All that you

have to do here is change the x coordinate in the blue ‘go to ()’ block in the above script to -144.

Try clicking the ‘Power_Switch’ on your interface to turn the clock on - it

should be fully working with the hours, minutes and seconds clearly

separated.

At this stage, I finally switched my backdrop graphic from ‘graph paper’ to

‘shiny metal’.

Save and backup your project file.

Step 24: - As you can see from the image above, the weekday and the current date are ‘engraved’ into

my metallic backdrop and just like the clock are programmed to change automatically using the

variables described in step 22 earlier. The ‘engraving’ of the data is such a simple trick, it just requires

the text to be a slightly lighter shade of grey than the background.

First, add a new sprite and choose ‘Paint to open the costume editor and name the sprite ‘Weekday’. Set

its size to 85% and its coordinates to x: -135 and y: -90. There is no ‘reporter’ block like those described

in step 22 to show weekday names as text but there is one (shown here on the

right) which returns the day of the week as a number (1 to 7) with 1 being

“Sunday and 7 being “Saturday”.

You will need to create two scripts for the ‘Weekday’ sprite. The first being

the usual one-block self-repositioning script (shown here on the left).

The second script will be updated by the broadcast ‘Update_Clock’ just like

the digital clock itself so that the correct day will be chosen automatically by a sequence of seven simple

decision processes in the form of “if weekday number is 1 then display costume ‘Sunday’” this script is

shown on the next page.

As this implies, you will also need seven costumes creating for this sprite using text of a suitable size

and colour. Text costumes are a good use of the mBlock5’s costume editor (so no need to use Word!).

mBot and Me
a Beginner’s Guide

Page 132 - mBot and Me - a Beginner’s Guide

You need to create the seven costumes for this sprite

before building the script shown on the left since each

‘If’ decision needs to refer to a different sprite costume.

In the costume editor ensure that you are in ‘Vector’

mode not ‘Bitmap’ mode and then choose the ‘T’ tool

and type the text “Sunday” (without the enclosing

speech marks).

Choose ‘Serif’ as the font and click the ‘Fill’ box to set

the following ‘Hue’: 0 ‘Saturation’: 0 and ‘Brightness’:

90. This will make the text a very pale grey. This fill

colour suited my backdrop very well, but you might

want to adjust the ‘Brightness’ value to suit your own

backdrop.

Finally switch to the ‘Select’ tool (the arrow pointer) and

position the text as accurately as you can over the central

point of the editor window.

Name the costume that you have made as “Sunday”. An

image of this shown below:

Duplicate this costume six times in the costume editor

and then rename each costume in sequence, one costume

for each day of the week. Click on the costume that you

have just renamed as “Monday” and edit the text in the

middle of the editor screen to say “Monday”. You might

want to adjust the brightness of the fill temporarily to check that your text editing is correct. Edit the

five remaining costumes in the same way.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 133

Do make sure that you reposition the text of each costume over the central point of the editor window

using the ‘Select’ tool and also reset the fill colour if you changed the brightness. Close the editor and

create the script shown on the previous page. This is fairly quick to accomplish; all that you have to do

is make one complete ‘If’ decision and duplicate it six times changing the ‘current day of week’ number

and costume name as appropriate. Click the ‘Power_Switch’ on your interface to turn the clock etc. on

and you should now have the day of the week suitably ‘engraved’ on the backdrop of your interface.

Making and programming this sprite is much quicker than this step suggests by its lengthy description!

Save and backup your project file.

Step 25: - Adding the date to your interface is very similar in many ways to (and a combination of) the

method of adding the weekday or the clock digits that you have just used. The date will be displayed in

its simplest conventional numeric form i.e. dd / mm / yyyy. As this format would suggest, it needs two

sprites to show the two digits needed to display the day (01 to 31), another two digits to display the

month (01 to 12) and four digits to display the year. It also needs two separator sprites (/). This makes

a rather daunting total of ten sprites in all (25% of the total sprites created in this project) but as usual,

these are much quicker to generate than you would think (and note, it is possible to complete this step in

about 30 minutes).

Start by adding a new sprite and then choose ‘Paint’ to open the costume editor and name the sprite

‘Day_1’. Set its size to 80% and its coordinates to x: -166 and y: -105. This sprite needs 10 costumes

making for it (1 to 9 & 0) in exactly the same way as you did in step 24 earlier. Name the first costume

“1” and then type in the costume editor the text “1” (without the enclosing speech marks). Exactly as

you did in step 24, choose ‘Serif’ as the font and set the fill colour to ‘Hue’: 0 ‘Saturation’: 0 and

‘Brightness’: 90. You then need to duplicate this costume nine times more; each costume in turn having

exactly the same single digit for both its name and as the text it will display. The last costume will be

“0”.

You might want to adjust the brightness of the fill for each piece of text temporarily to a darker shade to

check that your text editing of each costume is correct.

Close the costume editor and add

the two very simple scripts shown

here on the right. The first of these

is the usual self-repositioning

routine. The second is fairly self-

explanatory. It chooses the

costume (numeric digit) to match

the first letter of the data stored in

the ‘Cal_Day’ variable.

It is a fairly simple matter now to duplicate the sprite and name the duplicate ‘Day_2’ and then change

the two blue ‘go to x: () y: ()’ blocks setting the new x coordinate to -159. You also need to modify the

‘switch costume to ()’ block to letter 2 of the ‘Cal_Day’ variable. Click the ‘Power_Switch’ on your

interface to turn the clock etc. on and you should now have the first two days of the current date suitably

‘engraved’ on the backdrop of your interface below the weekday added in step 24.

mBot and Me
a Beginner’s Guide

Page 134 - mBot and Me - a Beginner’s Guide

By now you will have a good idea of how all of this works, so my remaining instructions for completing

the date display can be much briefer!

Right click on the ‘Day_1’ sprite in the sprites list and duplicate it twice. Name these duplicates as

‘Month_1’ and ‘Month_2’ and edit the scripts of each in turn. ‘Month_1’ needs the x coordinates both

set to -147 and the ‘switch costume to ()’ block to letter 1 of the ‘Cal_Month’ variable. ‘Month_2’ needs

the x coordinates both set to -140 and the ‘switch costume to ()’ block to letter 2 of the ‘Cal_Month’

variable.

Click the ‘Power_Switch’ on your interface again and you should now have the two month days of the

current date also ‘engraved’ on the backdrop.

Right click on the ‘Day_1’ sprite in the sprites list again and this time duplicate it four times. Name

these duplicates as ‘Year_1’, ‘Year_2’, ‘Year_3’ and ‘Year_4’ and as before edit the scripts of each of

these in turn. N.B. There is not a variable holding the value of the current year.

’Year_1’ needs the x coordinates both set to -127 and the ‘switch costume to ()’

block to letter 1 of the ‘current (year)’ reporter block.

‘Year_2’ needs the x coordinates both set to -120 and the ‘switch costume to ()’ block to letter 2 of the

‘current (year)’ reporter block.

‘Year_3’ needs the x coordinates both set to -113 and the ‘switch costume to ()’ block to letter 3 of the

‘current (year)’ reporter block.

‘Year_4’ needs the x coordinates both set to -106 and the ‘switch costume to ()’ block to letter 4 of the

‘current (year)’ reporter block.

Click the ‘Power_Switch’ on your interface again and you should now have all of the days of the current

date ‘engraved’ on the backdrop, but they still need the slash separator (/) to complete the effect.

Add yet another new sprite and then choose ‘Paint’ to open the costume editor and name the sprite

‘Separator_1’. Set its size to 80% and its coordinates to x: -151 and y: -105. This sprite needs only one

costume made in exactly the same way as the other date sprites. Type in the costume editor the text “/”

(the forward slash symbol). Once again, choose ‘Serif’ as the font and set the fill colour to ‘Hue’: 0

‘Saturation’: 0 and ‘Brightness’: 90. Name the costume as ‘Slash’ and close the costume editor.

In the scripts pane create another of the usual self-repositioning ‘when this sprite clicked’ one-block

script setting the x coordinate to -151 and the y coordinate to -105. No other scripts are required here.

Duplicate the ‘Separator_1’ sprite - it should automatically be renamed as ‘Separator_2’. Position it at

x coordinate -131 and y coordinate -105 and alter the contents of the ‘go to’ block in the ‘when this

sprite clicked’ script to x: -131 and y: -105. Click the ‘Power_Switch’ on your interface again and the

date should now be separated by the two forward slash symbols.

That’s it, your interface is now almost complete - the scripting of its sub-component parts is now

complete so save and backup your project file once again.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 135

Step 26: - This is the final step that you need to complete (and this is a purely cosmetic addition).

The interface looks better if it has three descriptive labels ‘engraved’ into it. You actually need to create

four new sprites for the three labels required. I found that the power switch label did not show on the

backdrop very clearly and there is no way to enhance any text produced using the costume editor; so I

decided to use the old trick of creating a ‘drop-shadow’ effect by positioning a fourth label over the third

one with its x & y coordinates offset by 1. The third label being set to a slightly darker shade of grey.

To complete this effect, you need therefore two duplicate ‘Power_Label’ sprites

Using exactly the same techniques as you employed in steps 24 and 25 create a new sprite and then

choose ‘Paint’ to open the costume editor and name the sprite ‘Title_Label’. Set its size to 55% and its

coordinates to x: 0 and y: 15. This sprite needs only one costume made in exactly the same way as you

have done before. Type in the costume editor the text “mBot Speed & Direction Controller” (without

the enclosing speech marks). Once again, choose ‘Serif’ as the font and set the fill colour to ‘Hue’: 0

‘Saturation’: 0 and ‘Brightness’: 90. Name the costume as ‘Label’ and close the costume editor.

In the scripts pane create another of the usual self-repositioning ‘when this sprite clicked’ one-block

script setting the x coordinate to 0 and the y coordinate to 15. No other scripts are required here. Go into

‘Presentation Mode’ and you should see that you now have a descriptive title positioned in the centre of

the interface between the direction controller sprite and the analogue meter sprite.

Duplicate your ‘Title_Label’ sprite and in the costume editor type in the text “ULTRASONIC SENSOR

- range in MILLIMETERS”. Name the sprite as ‘Mm_Label’ and set its size to 35% and its coordinates

to x: 0 and y: 33. In the scripts pane edit the ‘when this sprite clicked’ script setting the x coordinate to 0

and the y coordinate to 33. Return briefly to your ‘Title_Label’ sprite and in the costume editor use the

select pointer to stretch the text very slightly vertically and then exit the costume editor.

Duplicate your ‘Mm_Label’ sprite and in the costume editor type in the text “SENSOR - range in

CENTIMETERS”. Name the sprite as ‘Cm_Label’ and set its size to 35% and its coordinates to x: 125

and y: 122. In the scripts pane edit the ‘when this sprite clicked’ script also setting the x coordinate to

125 and the y coordinate to 122. Go into ‘Presentation Mode’ and check that you can see the sensor

labels underneath their respective monitor windows - you will also note that stretching the title label has

given it a little more emphasis.

Duplicate your ‘Cm_Label’ sprite and in the costume editor type in the text “POWER ON / OFF”.

Name the costume as ‘Power_Label_1’ and close the costume editor. Set its size to 40% and its

coordinates to x: -120 and y: 60. In the scripts pane edit the ‘when this sprite clicked’ script setting the x

coordinate to -120 and the y coordinate to 60. Duplicate your ‘Power_Label_1’ sprite and name the

sprite as ‘Power_Label_2’ and set its coordinates to x: -119 and y: 61. In the scripts pane edit the ‘when

this sprite clicked’ script setting the x coordinate to -119 and the y coordinate to 61. Return to your

‘Power_Label_1’ sprite and in the costume editor change its ‘Brightness’ setting to 45. Go into

‘Presentation Mode’ and check that you can see the two power labels almost, but not quite, on top of

each other with a slight hint of shadow on the upper side (N.B. This ‘engraving’ method produces a

much more realistic graphic!).

Well done! - Your interface is complete so save and backup your project file for the last time.

If you can make this project, then you can make anything!

mBot and Me
a Beginner’s Guide

Page 136 - mBot and Me - a Beginner’s Guide

Shown below is a screenshot of the complete set of 49 sprites created for my ‘Control Interface’ project.

This is a composite image taken from the sprites list of mBlock 5’s edit page. The sprite icons are in the

order that I left them at the end of constructing my project.

mBot and Me
a Beginner’s Guide

Page 138 - mBot and Me - a Beginner’s Guide

Chapter 16 - Creating ‘Smart Systems’ in mBlock 5

Humans were responsible for creating computers and giving them specific directions in the past, but not

necessarily anymore! Computers as machines have always had the power to make decisions according

to predefined algorithms built into their programming but new ‘smart systems’ techniques enable

suitably equipped computer systems to interact with the outside world, execute complicated mathematics

very quickly and therefore perform tasks (on their own) that are characteristic of human intelligence.

Artificial Intelligence (A.I.) - the science of mimicking human intelligence using computers is arguably

one of the most exciting fields of technological development with far-reaching potential to solve present

day problems. Just as humans store information in their brains and use complex mental processes to

learn from its patterns; computer scientists have been able to use the processing power of computers to

analyze patterns in stored data and allow machines to learn from it very quickly and to remember! This

is called ‘Machine Learning’ which together with A.I. can be used to build ‘Smart Systems’ to

interacting with humans by providing suitable feedback based on complex decision-making algorithms.

Makeblock are, quite rightly, very keen to expose kids to these computer / real-world interactions and

have created several ‘Extension’ packs of programming blocks to enable such work to be undertaken

using mBlock 5. However, as I mentioned earlier when reviewing these (on pages 50 & 51) the

currently available ’Sprites’ tab ‘Extension’ blocks are rather limited in what real-world solutions can

actually be achieved with them! Nevertheless, experimenting with simple Machine Learning and A.I.

feedback using these is still quite good for developing an understanding of some of the basic principles.

Using the ‘Video Sensing’ extension together with the ‘Teachable Machine’ extension makes it possible

to automate Emma’s favourite ‘Rock, Paper, Scissors’ game - a development that uses a web-cam

attached to your computer to sense when a hand movement is made in front of it and then interprets from

learned-shapes what hand you have made; the computer then responds by displaying a random hand

shape of its own. mBot does not need to be involved, so I built this (as demonstrated later in this

chapter) using just ‘Scratch Stage Programming’ but I am still not convinced by the accuracy of the

machine learning ‘recognition’ part.

Using mBlock 5’s ‘Climate Data’

extension on its own is rather clumsy and

seems limited in what it can display easily.

The example on the right shows the

‘reporter’ block that returns feedback

about the weather in ‘Oundle, GB’. The single word contained in the feedback from the internet needs

to be concatenated (joined) to other words to make a sensible sentence - and then only as a variable

displayed in a monitor window on the stage. Such block concatenations can become very lengthy!

By combining such feedback with a complex bit of ‘text rendering’ scripting and using the ‘Stamp’

block from the very useful ‘Pen’ extension to display on the stage and concatenating climate data with

linking phrases; and then using the excellent ‘Text-to Speech’ extension to read out those phrases almost

makes (but not quite) the use of ‘Climate Data’ in a ‘Smart System’ worthwhile. I am including

instructions on how to do this not only because this uses three of mBlock 5’s extensions together, but

also because it demonstrates some valuable scripting techniques including the aforementioned ‘text

rendering’ process and a valuable method of ‘auto-starting’ a project when it is loaded.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 139

Climate Data with Digital & Spoken Feedback - a ‘Smart Systems’ development

There are some alphanumeric digits available in the sprites libraries, but they are very cartoon like!

To enable this project to work in the way I was envisaging, I had to create yet more .png sprite images to

act as costumes alongside the set of numeric 7-segment LED digits that I had already created as part of

my preparations for my ‘Control Interface’ project (see Chapter 15).

I needed a complete alphabet of capital letters rather similar to those shown below:

Since I planned on using my italics set of numbers, I needed to create an italicized alphabet too.

Creating all twenty-six letter from my master no.“8” drawing was not as difficult or as tedious as it

might seem since many letters could be created by manipulating the existing segments of my drawing. I

also needed to create some punctuation (. , ; ! ? & ˚) made in a matching style - also not difficult! This

done, I could begin the scripting required. If you have worked your way through my ‘Control Interface’

project, then you are certainly capable of this project with the minimum of guidance.

mBot and Me
a Beginner’s Guide

Page 140 - mBot and Me - a Beginner’s Guide

I started by choosing a suitable backdrop and chose the

metal-edged ‘Monitor Window’ that I had drawn in

‘Word’ earlier.

You could perhaps just create a dark (greeny-black)

rectangle in the graphics editor as your own backdrop. I then created the four sprites shown above and

named them as ‘Set-Up’, Decisions’, Display & ‘Speak.

I used four of my own sprite images for these, but you could use anything else chosen from the sprites

library since none of these sprites are actually displayed on the screen. These four sprites are just a

convenient way of splitting the many scripts required for the project into sensible groups of blocks that

neatly fit into the ‘Scripts Area’.

With the ‘Set-up’ sprite active, I created the following ‘start

this project’ script (in lieu of a ‘Green Flag’ hat block - see

an explanation of this below):

N.B. The 'Timer' is a 'Sensing' feature in Scratch that is set to

zero when a project opens and continues to count even when

a project stops running. It accurately records in seconds (to

three decimal places) how much time has passed.

Clicking the 'Green Flag' or activating the 'Reset Timer'

block resets the ‘Timer’ to zero. It has many programming

uses since it cannot be paused, stopped or interrupted.

The 'when (timer) > ()' hat block provides a cunning way of automatically starting a project if the value

in the hat block window is set to (-1). This setting will immediately run any blocks below it (e.g.

Broadcasts calling specific scripts elsewhere in the project) and any ‘Green Flag’ scripts in the project

will also auto-start.

The scripts required for this project are all called by using ‘Broadcast’ messages.

Before creating the auto-running

‘start this project’ script (shown and

described above, I had already

created the twenty-one variables that

were required to manipulate the

climate, the date and the time data

required.

The twenty-one variables that I

created for this project are shown

here on the right:

Many of these variables required

populating with data at project start-up, so, on my first sprite ‘Set-up’ I added the ‘Make_Variables’

script needed to do this data-populating. This script is shown at the top of the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 141

As you can see above, many of these variables are using the ‘join ()(to ()’ block from the ‘Operators’

category of blocks to concatenate external data with meaningful sentence text.

You will also note that I had to make one block to provide phonetic output; which enabled the ‘Text-to

Speech’ extension to interpret “centigrade” and pronounce it correctly by reading “Centy-grayde”!

Mostly, the ‘Text-to Speech’ extension reads text very well, but occasionally you do have to resort to

phonetic spelling to make some words sound right. You can test word pronunciation, if you need, to by

typing variants of any word into the ‘Speak’ block and then clicking it.

I then moved on to my ‘Decisions’ sprite. Here I made the scripts shown on the next page which are all

called by the ‘Make_Decisions’ broadcast. These all use simple ‘If … Then’ blocks - each being

checked as the script runs until one is true and then updating the appropriate variable.

N.B. Scratch only outputs days of the week and months of the year as numbers so conversion is needed

to provide textual output. The main decision to be made here though, is converting the output from the

‘Climate Data’ weather ‘reporter’ block; which returns its textual feedback in ‘sentence case’.

Since I have not created any ‘lower case’ character costumes, my project needs the weather report data

to be converted into capital letters (‘upper case’).

Also, (as far as I am aware) there is no definitive list of possible phrases used to describe weather; so I

have added to this list of decisions using daily ‘trial-and-error’; recording every new phrase generated

as the weather report changed (so my list may still need more additions! ?).

mBot and Me
a Beginner’s Guide

Page 142 - mBot and Me - a Beginner’s Guide

I decided that I also needed a further, slightly more complex decision making script to add the suffix

‘ST’, ‘ ND’, ‘ RD’ or ‘ TH’ to the end of the number representing the day in any month.

This was created rather differently by nesting several ‘If … Then’ blocks using nested ‘Or’ blocks inside

an ‘If … Then … Else’ block.

This script that I created to do this is shown at the top of the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 143

All decisions made; it was time to move on to programme my ‘Display’ sprite. This is where I created

the set of self-defined ‘My Blocks’ shown below:

The block in the top left-hand corner relies on

a clever piece of scripting that I found in the

pages of the ‘Scratch Wiki’ which uses the

‘text rendering’ script (which is shown on the

next page) to ‘Stamp’ images of alphanumeric

costumes at any set position on the stage.

It requires three parameters. The text string to

be stamped and the x and y positions where

each letter in the string will be stamped.

Make this block first because all of the other

blocks shown here use it.

For this block to work, the ‘Display’ sprite where these ‘My Block’ scripts are being created needs 26

costumes - one for each alphabet letter (from A to Z). Each of these costumes MUST have the same

name as the letter it represents.

The sprite also needs a further 10 costumes, one for each numeric digit and then a 'space' character

(which is just a blank costume!) and its costume name MUST be the equivalent of what you would type

to create a space in text i.e. ' ' but note that you can't see it after you have entered it as a costume name!

If other characters need to be created and used (e.g. the punctuation characters that I mentioned) then

they also must have a costume whose name is the same as the character.

mBot and Me
a Beginner’s Guide

Page 144 - mBot and Me - a Beginner’s Guide

To make this self-defined

block you need to open the

‘My Blocks’ category and

click the ‘Make a Block’

button. The dialogue box

opens with a simple block

shape asking for a name for

the block - I called it

‘Add_This_Text’.

Simple blocks only need a

name, but this block needs the

five sub-components indicated

in the diagram shown on the

right - slightly complex, but

not too difficult to make.

As you can see from the

diagram, I added to the basic

block the three required parameters and two helpful labels.

First, I added an ‘Input Text’ box (to insert the text that needs to be processed by the block) - I called

this, predictably, ‘Input_Text’. This is, in fact, creating a new variable name inside the block.

I then added a ‘Label’ into which I typed ‘at x:’ and then an added an ‘Input Number’ box which I called

‘Text_Xpos’ (this is for entering

into the block the x coordinate

of the starting position of the

text to be processed).

I then added a second ‘Label’ into which I typed ‘y:’

and then an added another ‘Input Number’ box which I

called ‘Text_Ypos’ (this is for entering the y coordinate

of the starting position of the text to be processed).

Finally, I clicked the OK button to complete the

construction of the block.

Note that ‘Input_Text’, ‘Text_Xpos and

‘Text_Ypos’ are now available to use in

scripts just like named variables.

To this newly self-defined hat block I added the other blocks

needed to complete the ‘text rendering’ and ‘Stamping’ script

which is shown here on the left in its entirety.

This script sets the starting point of the text to be stamped and sets

the stamping position to 1.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 145

It then calculates the length of the text, chooses the

letter (costume) to be stamped and moves the next

stamping position by a predefined ‘space’; finally

increasing the stamping number by 1.

The stamping routine is repeated until the total

number of text characters in the string is reached.

The last block in this script is the self-defined

block which I called ‘End_Text’ (this script is

shown on the right). The ‘go to x:() y:()’ block

alone could have been at the bottom of the

previous script, but I wanted to reset the sprite

costume back to my default ‘Teacher_bot’ costume (instead of the last used costume showing). A neat

but important touch - well I thought so anyway! I next created three more self defined block scripts to

set the size of any text to be rendered. These simple scripts are shown below:

I then created the blocks that produce all of the individual lines of text to be rendered using the clever

‘Add_This_Text’ block script shown and described on the previous page:

Switching to the ‘Speak’ sprite it is at last time to make the project talk. Use the ‘Text-to Speech’

extension to create a ‘Speak_Data’ script like the one shown at the top of the next page.

mBot and Me
a Beginner’s Guide

Page 146 - mBot and Me - a Beginner’s Guide

Since the bottom of my stage display

screen looked a little empty next to the

short lines showing the Sunrise and Sunset

times, I decided to add a new (fifth) sprite

which I called ‘Signature’ to ‘sign’ the

bottom corner of the screen.

The last block in the ‘Speak_Data’ script

(shown here on the left) calls the

‘Show_Signature’ script sprite (see

below).

I added a scan of my signature as a

costume for the sprite and then added the

two scripts shown below to it.

N.B. For security purposes, I have

replaced my signature in the graphic of

my project screen shown on page 138 with

a rather poor text version which does not

really do full justice to the original!

You can completely omit this signature sprite if you want to.

Finally. I added the

‘Updating_Text’ block and the two

hat block scripts shown below.

The ‘Output_Data’ broadcast

received block clears the screen

and then triggers all of the self-

defined text rendering blocks to

run in the sequence that you can see on the left of the two scripts shown below.

N.B. The text ‘Updating …’

appears in the middle of the

stage display only whilst the

climate data is being processed.

The ‘Show_Updating’ broadcast

is, as you can see above, is

triggered by the ‘Hide-

Signature’ broadcast.

You may need to rethink how to

call this script if you omit the

signature sprite.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 147

You versus the computer! - a ‘Smart Systems’ development of ‘Rock, Paper, Scissors’

Emma used to enjoy the simple game of ‘Rock, Paper, Scissors’ and as you have seen earlier, we used

the game concept to develop several computerized variants with, or without, mBot’s input. In this

version, which uses a web-cam attached to your computer, the camera senses when a hand movement is

made in front of it and then responds by displaying a randomly chosen hand-shape graphic of its own.

mBot itself does not need to be involved here, but in a continuation of the earlier game projects I have

named “mBot” as the second player (although it is the computer making all of the decisions).

Once again, there is no ‘Green Flag’ script to start this project and once again it

relies on broadcasts to trigger events. You need to begin by creating the five

variables shown here on the left.

Next, you need to create the four

sprites shown on the right. The

first one I called mBOT and this

is where the scripts which trigger

‘smart’ decision making all take place.

Into this sprite I added the three costume graphics used in my last ‘Rock, Paper, Scissors’

project. (see Chapter 12 - page 74). These costumes are shown here on the right. I decided

that the look of this project should remain very simple and retain the ‘drawn on a

whiteboard with a felt-tip pen’ look for these costumes. So, my backdrop is blank - just

plain white – and you can (if you want to) choose your own ‘look’ for this project.

The other three sprites shown above (which I named ‘Player’, ‘Computer’ and ‘Outcome’)

are there just to separate out the scripts that make specific game decisions. They all have

no graphic showing because the first costume in each sprite is a ‘blank’ costume.

Each of these sprites has (more-or-less) the

same four costumes; all created in the graphics

editor. The first being a blank costume to

enable the clearing of data from the screen.

The remaining three ‘Player’ costumes have

text written in ‘Marker’ font in the centre of the display.

The first of these saying, ‘You made ROCK’ is shown here

on the left.

It was easy to copy this costume twice more and alter the

‘You made nnn’ text to ‘PAPER’ and ‘SCISSORS’ in each;

and then so simple too to add these to the ‘Computer’ sprite where each occurrence of ‘You made’ was

replaced with ‘mBOT made’ (- this could have been ‘the computer made’ but using ‘mBot’ seemed

best). The same costumes were then copied to the ‘Outcome’ sprite and the text in each changed again

to ‘PLAYER Wins !’ ‘mBOT Wins !’ and ‘It’s a DRAW !’. It is also just as easy to create the single

decision-making script needed for each of these three sprites once and then duplicate & modify it for the

other two sprites.

mBot and Me
a Beginner’s Guide

Page 148 - mBot and Me - a Beginner’s Guide

My ‘drawn on a whiteboard with a felt-tip pen’ project screen layout (with the computer’s random

selection of a hand-movement graphic together with the feedback text from the three text output sprites)

is shown below:

No programming was required for positioning the three text feedback sprites or the hand-movement

graphics - I just went to each sprite in turn and dragged each about on the stage (by trial and error) until

they looked as intended - simple, but effective.

At the top of the next page are the three scripts that select the costume for each of the text feedback

sprites (‘Player’, ‘Computer’ and ‘Outcome’). The ‘Player’ decision is made by the response from the

web-cam; the ‘Computer’ decision is made by random-number generation and the ‘Outcome’ decision is

made by a calculation decision based on the other two.

Make the first script (on the ‘Player’ sprite) and then duplicate it across into the other two sprites.

Change the ‘reporter’ variable that is being compared in each ‘If’ decision as shown in the scripts below,

first modifying the ‘Computer’ script and then the ‘Outcome’ script.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 149

These three sprites scripts are all activated by the ‘Update_Feedback’ broadcast which will then display

the three sets of ‘chosen’ text costumes on the stage.

Now it’s time to create the complex

scripting required for the ‘mBOT’ sprite.

First, you need to create the six self-

defined blocks shown on the left. On the

right is shown the primary script that kicks

everything off, so you need to make this

next.

There is no ‘Green Flag’ script to start this

project (and the auto-run method described

earlier is not used either). Instead, the

‘when video motion > ()’ hat block auto-

runs the project; waiting for any movement

to be detected by the web-cam and if

movement is detected then the script

continues to run; if no movement is detected then it just waits.

Putting 10 in the block (its default setting) makes it quite

sensitive to any movement - you may want to experiment

with higher numbers to lower the detection threshold. Setting

the video to ‘on’ is sensible and setting ‘video transparency’

to 100 hides webcam output completely. (N.B. a setting of 0

displays what your webcam can see on the stage!). Before

proceeding any further, you need to train your web-cam to

recognize your own hand movements.

mBot and Me
a Beginner’s Guide

Page 150 - mBot and Me - a Beginner’s Guide

The principle of what is happening here is right, but I’m still not convinced how good this really is;

nevertheless, it seems to work - sometimes!

The TM category only has one block which accesses a ‘Training Model’ window. This also opens an

integral on-screen ‘Recognition Window’ showing what your web-cam can see.

You need to name three ‘categories’ (rather like variables) which, when the model is in use, will become

available as new blocks added to the extension. These ‘categories’ are ‘trained’ on what the web-cam

can see. Name each category ‘Rock’, ‘Paper’ and ‘Scissors’ and then click the ‘Learn’ button for the

first category and a little thumbnail of the web-cam image will be shown.

Make the hand-shape several times and the ‘Recognition Window’ should start to identify the shape with

the category name. Repeat for each of the categories several times until the ‘Recognition Window’

seems to identify each shape with a good percentage of certainty. Click the ‘Use the Model’ button to

exit training mode.

You now have access to the ‘boolean’ block ‘recognition result is ()’ which has a drop down list of your

three named categories. You can now add these blocks to the self-defined block ‘Check_Video’ (shown

on the next page) which sets a numeric value for each hand-movement identified by the web-cam.

Click to ‘Learn’ here

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 151

Finally, to complete the project, you need to create all five of the self-defined block decision-making

scripts; and the short script (to reset the ‘mBOT’ sprites default icon) which are all shown on the next

page.

These are the five self-defined block (decision making) scripts and the reset default icon script.

mBot and Me
a Beginner’s Guide

Page 152 - mBot and Me - a Beginner’s Guide

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 153

Chapter 17 - About Good Habits & Best Practice

I have so far in this book been trying to demonstrate how I have found my own way through the maze of

information (or lack of it) about mBot and more particularly, mBlock 5. I feel that the time has come to

preach what I have tried to practice so far. Any worthwhile project needs you to develop quite a few

skills and habits as you progress on your own journey.

• Always aim for small easy to understand procedures preferably called by broadcast messages - keep

‘Green-Flag’ activation to a minimum or non-existent.

• Always use a sensible and consistent naming convention for projects, scripts, broadcasts and self-

defined blocks. When you assign names, try to make sure that they are accurately descriptive and

logical. They MUST be understandable to either someone else or indeed yourself when you return to

a programme that you may have scripted months or even years earlier. I always use the underscore

character “_” as a separator to represent a space (making one continuous set of characters) e.g.

using_an_underscore_to_simulate_a_space. This prevents errors if moving your work across into

textual (Python or Arduino) programming.

• Once you have an idea for a project, do carry out some systems design and planning (inc. initial

sketches and logical sequencing algorithms).

• Develop a variety of graphics programming techniques and then always use high-quality graphics to

enable you to create and add to your own bespoke sprites toolkit.

• Always try to test-bed individual sub-component parts of a project.

• You MUST develop good housekeeping techniques too. Do aim to keep on top of all your files inc.

their storage to hard disk (always using the grandfather, father, son principle for saving backup

copies). Sensible storage of graphics files, sprites files and the valuable .sprite3 files are vital too.

A very good habit to develop when writing scripts is to use ‘Comments’ call-out boxes frequently to

annotate your projects and make them understandable. It is important to note that descriptive

‘comments’ can be usefully added to the mBlock 5 ‘Scripts Area’ without them being connected by

leader lines to individual blocks.

I do use comments in my projects a lot, but I have omitted them from most of the script sequences

demonstrated here since they are fully described in each project sequence.

If you add a ‘comment’ to an individual block, then the leader lines are attached to the right-hand end of

most blocks (but from the middle of a ‘My Blocks’ hat block). If blocks are nested inside other blocks,

then the leader line is attached to the right-hand end of the nested block which was right-clicked to add

the comment.

‘Comments’ call-outs now look much neater, sharper and clearer than they ever were in mBlock 3. The

leader-lines now remain connected to the block that the comment refers to too and they can now be

positioned anywhere with the leader lines at any desired angle (not just horizontal like before!) - much

improved, but not yet perfect! Sadly, they still tend to move and reposition themselves, particularly if

you open and then close the code comparison windows which pull in or out from to the right edge of the

interface.

mBot and Me
a Beginner’s Guide

Page 154 - mBot and Me - a Beginner’s Guide

About mBlock Files

mBlock 5 filenames in your ‘My Projects’ window (in the Makeblock Cloud) show a maximum of

fifteen characters (but only fourteen when you are editing them). When developing a project, I always

save my files with short filenames (10 chars. max.) appending v. 1, v.2 etc. to each modification of a

project. In this way the whole filename can be seen under its thumbnail including which version it is.

I have found this useful - even though the file thumbnail also shows the info. (minutes days or weeks

since last saved).

‘My Projects’ is just one large storage area and any files stored there will are always visible with no way

to logically subdivide or order them. You have to sign-up or sign-in to mBlock to use their cloud

service. To do this, you click the sign up / sign in icon at right-hand end of the tool bar.

If you double-click (or right click) on a mBlock 5 filename in the cloud and choose to edit the name,

then it becomes highlighted, showing that it has been selected. Unlike other forms of text editing you

cannot click again to position an ‘insert point’ to edit just part of the filename. This is a little tedious,

but there is a way round this. Just press one of the cursor keys on your keyboard. This will deselect the

highlighting of the filename slot but remain in editing mode and you can now move the ‘insert point’ to

anywhere in the filename to edit it. ‘Up’ moves the cursor to the start of the filename, ‘Down’ moves it

to the end of the filename; whilst ‘Left’ and ‘Right’ move the insert point one character in the indicated

direction.

N.B. Long text strings in ‘input slots’ / ‘bubbles’ in mBlock 5 programming blocks obey the same

editing rules described above.

mBlock 5 does not use the standard Windows format (three-letter, occasionally four letter) extension for

files - it uses six letters for its Windows PC file extension (.mblock) and it only recognises this as well as

the older .sb2 and .sb3 file extensions and the .json - JSON file format (JavaScript Object Notation)

which is a standard data interchange format primarily used for transmitting data between a web

application and a server.

Do be aware that if you try to open an old .sb2 file (created in mBlock 3) in mBlock 5 then the file may

open, but without any of the robotics blocks originally in that file showing in the ‘Scripts’ area.

mBlock 5 now (since the July v5.1.0 update) also recognises the very useful (but unusual) .sprite3

extension. This is used to save sprites, and rather more importantly their attached block scripts,

costumes and comments.

If you have installed the mBlock 5 application to its default location on a PC, then it’s hard to locate the

mBlock 5.exe file if you want to choose the App required to open mBlock 5 files using the ‘always open

with this file type’ dialogue.

It is well hidden, but I looked at the desktop shortcut icon’s properties to see the path to the .exe file and

found it hidden in an ‘invisible’ folder on the C drive of my PC. The full default path to the .exe file is

as follows:

C:\ProgramData\mBlock5\mblock\mBlock.exe

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 155

To see it, you need to choose ‘View’ from the menu at the top of the primary C drive folder and then

check the box, ‘Hidden items’. You could perhaps install the software to a more accessible and visible

folder instead?

If you use mBlock 5’s ‘Save to your computer’ option, files will be automatically added to the last folder

you used in your own filing system - unless you reset the file path to your folder of choice. Project files

are otherwise saved to 'My Projects' in the mBlock cloud for quick access.

The Makeblock Cloud is nearly always fast and reliable, but it does ‘hang-up’ & stop sometimes. I

would always recommend using the ‘Save to your computer’ option as a secondary storage method and

I do use the ‘My Projects’ cloud storage option with my own mBlock 5 files - BUT - I always make a

disk backup frequently too. It makes sense to only use ‘My Projects’ for work in progress; and then

emptying out by archiving your files to storage in folders on your hard-disk when completed. As long as

you sign in to mBlock 5, either on your PC, using a web browser, or the mBlock mobile app. you can

always find your ongoing projects in your ‘My Projects’ page in the Makeblock cloud from anywhere!

If you, like I did, started your programming journey using mBlock 3 then any files you created there are

redundant and need to be totally reworked in mBlock 5 should you still need to use them. There is no

conversion process available and it seems that old .sb2 files can only be opened in mBlock 5 by

changing the extension to .mblock - but it’s hardly worth the trouble since they often fail completely or

do not transfer correctly. The main problem with moving files across from one system to the other

seems to be with the fact that mBlock 5 now has two separate programming areas (the ‘Devices’ tab and

the ‘Sprites’ tab) whereas mBlock 3 just had one programming area for both robotics block

programming and sprite programming.

Early on in my experiments with the new application I found that it was not worth trying to open any of

my old files this way in mBlock 5 but I did find however, that I could open mBlock 3 and copy text from

any comments boxes to a temporary text file and then paste the text into new comment boxes attached to

blocks in mBlock 5 - this saved time, but was only worth it if they contained a lot of detail!

So on-the-whole, totally rewriting scripts in mBlock 5 is actually quite quick, especially if you capture a

screenshot (in mBlock 3) of any block scripts that you want to recreate and then rebuilding them in

mBlock 5 using the screenshot (or a print-out) as a guide.

Creating a ‘Set-Up’ File

A useful way of starting mBlock 5 is to make mBot your ‘Regularly Used Device’, making it the default

device (not ‘Codey’) set to appear each time you open a ‘New’ project. Open the ‘Device Library’ list

and hover the cursor over the top left corner of the mBot device icon. A hollow blue star will become

apparent, click the star to make it turn solid blue - this will make mBot the default start-up device.

It is even quicker to get going with mBlock 5 by setting up the way you like to use it and then saving

this set-up as a file on your computer for re-use, adding a shortcut to this file on your desktop. Every

time that I use the Block 5 application, I now choose a shortcut icon on my desktop to open a file saved

as ‘mBot Setup Page’.

I also have a copy of this file saved in ‘My Projects’ in the cloud.

mBot and Me
a Beginner’s Guide

Page 156 - mBot and Me - a Beginner’s Guide

To create this file, (if you haven’t yet used the ‘Regularly Used Device’ adjustment described above),

open mBlock 5 and from the ‘Devices’ tab, open the device library and add the mBot sprite as a new

device. Then deleted the ‘Codey Rocket’ sprite as an available device leaving mBot as the only icon in

the 'Device' sub-panel. Switch to the ‘Sprites’ tab and delete the default ‘Panda’ sprite, replacing it with

a sprite of your own choosing. I used one of my own mBot drawings - not crucial, but it looks good.

Change the name of this new ‘Sprite’ to ‘Set-Up’ both in the editor and in the ‘Sprites’ tab and finally

add a suitable background image to give the stage some meaning - always better than it remaining white!

I used my ‘Graph Paper’ backdrop. It’s also a good idea to add the useful ‘Makers Platform’ extension.

Save the file (I called mine ‘mBot Setup Page’) and make a desktop shortcut. See Chapter 5 (page 21)

and Chapter 9 (page 42) for more on my setup page.

Setting up a Sensible Filing System

It may seem presumptuous for me to suggest this but having a sensibly organised file hierarchy is a very

good habit to adopt. When I started my mBot programming journey I set up an ‘mBot Stuff’ folder in

my own user documents in my PC’s filing system. I added the folders shown below to organise my

files:

mBot Stuff

My Project
Files

Scripts
(Sprite3) Files

Backdrop Files Scripts
(Grabbed Screens)

Sound Files Sprite Files Graphics Files

mBot Setup
Page

Movement
Tests

Simple
Games

Stage Display
Tests

LED Panel
Tests

Extensions
Tests

Advanced
Projects

Misc. Tests

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 157

The ‘Scripts (Sprite 3) Files’ folder contains my saved .sprite3 files.

These files are VERY useful because they are a way of storing and retrieving scripts

for future use but by default they have the plain ‘unknown file type’ icon (shown on the

right). Since these are not immediately linked to mBlock5 I had to right-click one of

them and choose the app that would always open the .sprite3 file extension. It’s not

crucial to do this since you import these files into mBlock 5 when needed, but I did it

anyway and the plain icon for all of these was replaced by mBlock’s ‘Panda Cog’ icon.

The sub-folders within my ‘Project Files’ folder are also shown as part of the filing system diagram on

the previous page - some of these folders have sub-folders too.

My ‘Sprite Files’ folder is quite important as it stores (in several sensibly named sub-folders) the sprites

making up my oh-so-useful’ sprites toolkit.

My ‘Sound Files’ folder stores a few sounds - but not many are needed for robotics. Sound files do

have their uses but do remember that they play through your computer’s speakers and not through mBot.

If you click on the ‘Sounds’ tab in mBlock 5 you will see that there is just one default sound file, 'Pop'.

I deleted this from my ‘mBot Setup Page file too before saving it. It is easy to add more sound files as,

when and if, you really need them in a project.

Making a purpose-built Work Tray

Raising the back of the robot up off a desk or table-top is easy to do if you put something about 20mm

high under the area (where the back axle would be if only it had one!). This use of an ‘axle-stand’ is

highly desirable and avoids mBot thrashing about if it does go amok and for some reason you

unintentionally start-up its drive motors.

It’s not too difficult however to make a special worktop tray, a ‘service bay' (or ‘sick-bay’ perhaps) to

mount the robot with its wheels raised. A board with a small block of wood screwed on to it can provide

a permanent ‘axle-stand’ and if the front of the robot is temporarily attached to the board by a couple of

bolts put through the big (8mm dia.) holes it will hold and steady mBot; which is ideal when modifying

& testing new components.

I made a purpose-designed ‘service-bay’ tray

which I use for most programme testing until

I know the robot runs as it should. (see the

picture on the right & the picture of it in use

on the next page).

It uses an 'Apollo' brand rectangular 35 x

25cm Polypropylene Chopping Board –

approx. £5 from TESCO & £6.50 via

Amazon; and a couple of filed-to-suit angle

brackets (about £4.50 from B&Q).

mBot and Me
a Beginner’s Guide

Page 158 - mBot and Me - a Beginner’s Guide

The grooves around the board retain screws very usefully when assembling extra components.

I also bought some

extra M4 nuts, some

M4 x 12mm (longer

than the original

8mm) screws and

some M4 wing nuts

to help with

constructing robot

models - the cost

was about £5.50 in

total for 20 of each

on eBay.

I have quite big

fingers and M4 nuts

are quite small, so

when model

modification demands it I occasionally use a small white towel under mBot to catch any falling screws

and nuts etc. These do bounce a long way if they are dropped and hit a hard surface - and on a patterned

carpet, well … The towel (not shown here) has slots cut in it to fit over the two brackets.

Additional Storage

I did note in my product overview in Chapter 3

(on page 10) that it's tricky to keep track of cables,

spares and add-ons for tech toys and that is true

with mBot too.

I also mentioned there that I did succumb to a bigger

storage option and here it is - a small tool-box which

cost about £6 from B&Q. As you can see from the

picture on the right, mBot fits nicely into the bottom

of the toolbox with space for two divided plastic

boxes next to it. This particular toolbox has the small

tray that you can see on the right, which is a perfect

size for tools, cables & the IR remote.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 159

Chapter 18 - Quo Vadis ?

After buying in all of the

add-on components

described in the appendices,

and then constructing and

programming each of the

prescribed models; where to

next? I had gained quite a lot

of lovely Makeblock bits &

pieces but what can I make

with them? When I looked at

my assembled mBot

collection, (see below)

nothing particularly came to

mind.

I then considered what tasks mBot

itself can do, and I decided that

using one of its two primary outputs

- the Ultrasonic (distance) Sensor

made sense for developing a new

project. I also decided that mBot’s

two motors powering the drive

wheels, together with the two servos

(gained as add-on components) are

the only other things have any real

value for creating robotics projects,

apart from the amassed collection of

beams, linkages, fixings and plates.

So, distance sensor, motors &

servos … what to create?

The Ultrasonic Sensor enables the

mBot to ‘see’ and ‘recognize’ objects, avoid obstacles, measure distances or detect movement and uses

the same scientific principle as bats; it measures distance by calculating the time it takes for a sound

wave to hit an object and come back; just like an echo. The ultrasonic sensor has a (supposedly)

maximum range of 400 centimetres (4M) - could I perhaps use mBots Ultrasonic Sensor to simulate the

radar, sonar or depth devices on a ship? I began to research mBot models on the internet and found a

YouTube video showing a very likable ‘Air Traffic Control’ radar simulator model based on mBot:

https://www.youtube.com/watch?v=UjKnSca2tVs

This was a creation of Javier & Eva Venegas who have a Spanish educational website: 'KidsandChips' -

a site showing (for a variety of platforms and kits) educational robotics projects which are capable of

being constructed and programmed by anyone. The site is written in Spanish, but it is translatable by

Google (to see it, use the following link):

www.kidsandchips.es

https://www.youtube.com/watch?v=UjKnSca2tVs
https://www.kidsandchips.es/

mBot and Me
a Beginner’s Guide

Page 160 - mBot and Me - a Beginner’s Guide

As much as I liked the ‘KidsandChips’ radar simulator project, I really did not like the method they used

to rotate mBot. This required the removal of the wheels and motors from mBot’s chassis and then one

motor and wheel fixed below mBot at the natural balance point. OK, it seems to work - but so

vulnerable to damage since the whole model is balanced on the single (not over strong) integral axle of

one motor. Makeblock do include spare motor shafts in the mBot kit - probably for good reason! Below

are two views of this cut from the ‘KidsandChips’ YouTube video - to my mind, a rather scary balancing

act:

My first though on modifying this project was to keep mBot more-or-less intact. In Appendix 13 (page

243) which outlines ‘The Intelligent Desk Light’ project I indicated my reluctance to dismantling mBot

by substituting mBots chassis for an aluminium ready-meal tray to make a lamp-shade.

Could I not make mBot rotate on the spot by driving one wheel forwards and the other wheel

backwards? A brief test of this showed that mBot could indeed rotate, but it moved about a bit and did

not remain on the spot.

I also found the motors supplied with mBot needed a speed setting of 30% to drive mBot happily; this

gave mBot a rotation time of about 6 seconds per full revolution. What I needed I thought was a

baseboard with an upright pivot spigot through it and a pivot hole on the underside of mBot in line with

the two axles and midway across the chassis.

You can just see from the pictures above that the

‘KidsandChips’ team used cuttable linkages bolted to

the underside of mBots chassis to mount their motor.

I thought that I could do the same to create the

required pivot point and you can see clearly in the

picture on the left how this was achieved with one

short strip of cut linkage bolted across the axle (pivot

point) of the robot.

You can also see that that I had to remove the line-

following sensor and the front wheel to utilise the

threaded holes on the chassis - as a bonus however

this allowed me to reposition the front wheel at 90º

to its normal position allowing it to follow a circular

track around the pivot easily and with minimal drag.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 161

All that I had to do was to create a circular baseboard from

some scrap plywood. A diameter of 225mm seemed ample to

allow mBots front roller-ball wheel to be supported.

After measuring the height of my new pivot point on the

underside of mBots chassis (25mm), I added a 30mm

countersunk headed screw to the centre of my circular

baseplate (see the picture of this on the right);

I positioned mBot with its new pivot point fitted over the

central pivot screw on the baseplate disk and was ready for a

second test. It worked as expected - a perfectly smooth

rotation and the front roller-ball wheel equally smoothly - a very successful experiment!

 My next modification (shown here on the left)

was to reposition the ultrasonic sensor on top

of mBot – vertically in line with the rotation

point.

This was so easy to do and as mBot rotated the

sensor maintained position over the rotation

point. My modification still looked essentially

like mBot too, but this had now become a

model that could simulate a ‘rotating radar’

unit!

I have found that I can keep the three pieces of

cut linkages underneath mBot most of the time.

Since I used two M4 wing-nuts to hold the

front roller-ball wheel in place it takes seconds to rotate it back in line with the robot (with only one bolt

and wing-nut needing to be repositioned). The sensor can be quickly refitted back in its normal position

on the front of mBot too and since I hardly ever use it the line-follower module is not usually re-attached

to my mBot.

Another mBot based project on the 'KidsandChips' website also attracted my interest. This was another

YouTube video of a simple mBot powered ‘Spirograph’ drawing machine; it was so intriguing that it

inspired me to start an mBot ‘drawing machines’ project. You can this inspiration for yourself at:

https://www.youtube.com/watch?v=-Biq2Hys-5w

One particular project on yet another Spanish website shows in quite some depth, robotic sensing and

logical decision making in getting mBot to escape from a labyrinth. The line-follower sensor and

ultrasonic sensor that come with mBot are the only sensors needed to implement an outstandingly good

and well documented maze-solving algorithm. This website contains much valuable information and it

is authored by Dani Sanz, a professional who specialises in on-line courses in educational robotics. I

may well try out his ideas too - the link to his work is:

https://juegosrobotica.es/

https://www.youtube.com/watch?v=-Biq2Hys-5w
https://juegosrobotica.es/

mBot and Me
a Beginner’s Guide

Page 162 - mBot and Me - a Beginner’s Guide

Chapter 19 - An mBot ‘ Radar’ Simulation Project

Following on from my experiments with a rotating-on-the-spot mBot (describe in the last chapter) I got

to work and eventually created a working version of a radar screen simulation using mBlock 3 - this was

about six months before I switched to mBlock 5.0.1. A screenshot of the mBlock 3 screen running this

project is shown below:

Eventually, I got back to recreating this project using mBlock 5. This was a little harder to achieve since

I had to juggle robotics scripting on the ‘Devices’ tab and stage graphics programming on the ‘Sprites’

tab. I had to wait another four months before I had developed my understanding of mBlock 5 enough to

be able to rewrite this.

At its simplest, this project needs mBot to rotate on its own axis (with the ultrasonic sensor mounted

vertically above that axis - as shown on the previous page) and the x and y coordinates of the position of

any identified objects around mBot then calculated from two pieces of data.

The first needs the sensor to be repeatedly polled and the data feedback transmitted to Mblock 5 whilst

the second needs to be estimated by timing (matching as closely as possible mBot’s rotation speed).

1. The distance from any object identified (Range).

2. An estimation of the angle of mBot’s rotation (Bearing).

Using these two pieces of data and some simple trigonometry, the x, y coordinate positions of any

objects identified around mBot can be identified by processing the following two formulae:

Position in X = (Sin of Bearing) x Range

Position in Y = (Cos of Bearing) x Range

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 163

Using mBlock 5’s potential to link and interact with feedback from mBot’s sensors via ‘stage’ graphics

enables you to create the illusion of a ‘Radar Screen Display’. The project backdrop that I created is

shown above. This has on top of it a rotating analogue ‘Sweep’ graphic, which moves in sync. (more-

or-less) with mBot’s on-the-spot rotations and using the basic mathematical principles outlined on the

previous page, the identified position of any object around mBot can be used to position a pen-drawn

‘Radar Contact’ graphic on top of the radar display.

The sweep indicates the bearing direction being polled and the ‘Target Bearing’ window shows this

numerically too. The ‘Target Range’ window shows the current reading from mBot’s Ultrasonic Sensor.

N.B. These two windows use the graphical LED digits used in my ‘Control Interface’ project (see

Chapter 19).

I began this project (initially using mBlock 3) by testing the ultrasonic sensor. I pointed mBot at a wall

and using a tape-measure to position it noted the sensor feedback readings at different distances. Rather

disconcertingly all readings were 27 - 28% less than the distance indicated by mBot’s position on the

tape-measure. I also noted that the sensor values constantly fluctuate slightly if the sensor is detecting

something, but the sensor always returns 400 if it is not detecting anything (its out-of-range reading!).

On the next page is the algorithm that I devised to work out the sequence of how the project might work:

mBot and Me
a Beginner’s Guide

Page 164 - mBot and Me - a Beginner’s Guide

•
My Basic Concept Algorithm

for an mBot

‘Radar’ Screen Project

Power

Switch ON
Yes No

Start

Stop All

Power Lamp

turns Green

Yes

Rotate

mBot

Rotate

‘Sweep’

Sprite

Poll mBot

Sensor

Calculate

Contact (x, y)

Position

Calculate

Range

(plot radius)

Display

Range

Calculate

Bearing

(plot angle)

Display

Bearing

Range <400

Warning

Lamp turns

Red

Yes No

Display

Close

Contact

Warning

Lamp turns

Yellow

Display

Normal

Contact

Range <40

No

Yes

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 165

As outlined earlier, the problems with using the ultrasonic sensor are twofold. Firstly, my ultrasonic

sensor under-reads by about 27% (this may vary slightly for individual Me sensor modules?).

Secondly, the point at which the sensor stops reading distances (its range) varies according to the

ambient light around it and the range of the sensor is nowhere near the 400cm (4M) range expected. I

guess that each individual Me sensor might vary slightly in this too.

• In bright daylight (outside) my sensor monitor reading did not start to fluctuate from a

fixed 400 until it was below 150cm (1.5M) - an extremely poor result!

• Indoors (in reasonable daylight) the sensor monitor started to fluctuate at 230cm (2.3M)

and with curtains drawn (performing in subdued light) it still only started to perform at

270cm (2.7M)

• Testing it at night, in darkness, the sensor monitor readings begin to fluctuate at 330cm

(3.3M) - which corrected by adding 27% gave a max. range of 4,2M.

Matching the on-screen radar sweep graphic’s speed with mBot’s rotational speed is hard to achieve

with any degree of accuracy, so as usual, I carried out several ‘test-bed’ exercises first with both the

graphic rotation and the speed of mBot.

I discussed motors in Chapter 15 (on page 125). Individual motors will vary in output to but generally

are only reliable at speed settings of over 30% (76.5/255). At speeds lower than this, mBot's motors

tend to stall. This speed (the slowest I can reliably set) will rotate mBot clockwise in approx. 6 secs per

revolution. Carrying out programming tests relating to rotating the radar sweep, I settled on making it

move in 10˚ increments which still looked fairly smooth in action. I also found that to match mBot’s

rotation speed I had to build in to the rotation script a delay (wait) time of 0.13 secs per 10˚ of revolution

of the graphic for it to match mBot.

N.B. 0.13 x 36 = 4.7 secs; but even though (0.165 x 36 = the required 6 secs) a wait time of 0.13 secs

worked best in my tests. You might (& probably should) test both your own motor speeds and measured

readings from your own ultrasonic sensor.

Experimenting with a ‘Sonar Ping’ sound file was valuable too. Adding one which lasted just under 2

seconds added much to the illusion but needed playing ‘until done’ rather than just ‘started’, which

cropped the sound into a short blip.

Once I had established the basic principles of what I wanted to achieve it was time to begin

programming the project in mBlock 5. On the ‘Sprites Tab’ I created the following eleven sprites:

The two ‘Lamp’ sprites are named ‘Lamp_On-Off’ and ‘Lamp_Warning’. The three ‘Bearing’ and three

‘Range’ sprites are appended with ‘_Hundreds’, ‘_Tens’ and ‘_Units’ in exactly the same way as they

were in my Control Interface project (see Chapter 15). I had saved one set of my LED sprites from that

project as a .sprite3 file and I was now able to imported it into this project and duplicate it; which saved

much time and effort!

mBot and Me
a Beginner’s Guide

Page 166 - mBot and Me - a Beginner’s Guide

The two ‘Lamp’ sprites need the same four costumes added to

each of them (so just make one sprite & then duplicate it!).

The ‘Contact’ sprite contains NO graphic costumes as such, but to exist, it must have a blank costume

that cannot be seen on the stage. This sprite is just a neat way of containing all of the scripts require to

position, draw and ping any identified ‘radar’ contacts.

The ‘Switch’ sprite has two

costumes, ‘Switch_Off’ and

‘Switch_On’.

Whilst the ‘Sweep’ sprite only has just the one

costume shown here on the right.

To create this in Word, I drew a ‘Freeform Shape’

and filled it with the vivid green colour (R 90, G

255, B 60). I then formatted the Shape with a

‘Gradient’ fill as shown on the right.

I then followed the method (described in Chapter

14) to create a .png sprite file; very carefully

turning all of the white background transparent using Photoshop’s ‘Magic

Eraser’ tool. It took some time to make this work as intended.

The LED sprites had all of their costumes imported with them when I

loaded my .sprite 3 file. The first sprite that was imported, was duplicated

five more times to create the six LED sprites required for this project.

From now on, I intend to provide the bare minimum of explanation, but I hope that I will have provided

you with enough clues on the following pages to enable you to create this project.

After setting up the sprites required, I created the following Broadcast message names:

Check_For_Contact, Motors_Run, Motors_Stop, Poll_Sensor, Run_All, Send_Data, Set-Up_All,

Stop_All, Switch_Lamp, Update_Digits, Warning_Off, Warning_Set, Zero_Digits

I also created the following Variables:

Bearing_Digits_Shown, Bearing_Hundreds, Bearing_Tens, Bearing_Units, Bearing_Xpos,

Bearing_Ypos, Digits_Space, mBot_Speed, Plot_Angle, Plot_Radius, Range_Digits_Shown,

Range_Hundreds, Range_Tens, Range_Units, Range_Xpos, Range_Ypos, Sensor_Adjustment,

Sensor_Value, Sweep_Offset, Sweep_Speed, Switch_Pos, Target_Range, X_Pos, Y_Pos

On the next page is a screenshot of all of the ‘DEVICES’ tab scripts. These are required to operate mBot

and to provide feedback back to the ‘stage’. Only one script is required to start mBot’s motors. Adding

+2 to the motor power on port M2 corrects a slight difference in speed between the motor on port M2

and the marginally faster motor on port M1 - you may need to make a similar adjustment. N.B. Using

'anticlockwise' for each motor turns mBot to the right - clockwise!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 167

Scripts created on the ‘Devices’ tab:

On the next page are the ‘Switch’ sprite scripts created on the ‘Sprites’ tab. The ‘switch’ (activated by

the ‘when this sprite clicked’ hat block) sets up all required variable values and starts both mBot and the

‘Radar Screen’ graphic.

N.B. Full-screen ‘Presentation mode’ needs to be selected but there is no way of automating this feature.

mBot and Me
a Beginner’s Guide

Page 168 - mBot and Me - a Beginner’s Guide

There are three

critical Variables

values to be set-up

here.

(1) Setting

‘mBot_Speed’ to 30%

will make mBot’s

motors work at a

speed of 76.5 / 255.

At speeds lower than

this, mBot's motors

tend to stall!

(2) Setting a

‘Sweep_Speed’

timing interval of

0.13 will give a 6

second rotation time

for the sweep graphic

(which matches the

time it takes mBot to

complete one

revolution).

(3) Setting the ‘Sensor_Adjustment’ to 27/100 (27%) gives a sensor feedback value equivalent to the

actual distance targeted.

Shown below are the three short ‘Lamp_On-Off’ sprite scripts, which are activated by the movement of

the ‘switch’ sprite broadcasting the ‘Switch _Lamp’ message.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 169

Shown on the right

are the two ‘Sweep’

sprite scripts,

‘Run_All’ and

‘Stop_All’.

There are also two

additional scripts

here, ‘when (down

arrow) key pressed’

and ‘when (up arrow)

key pressed’.

I used these to start &

stop mBot manually

when I was testing

early versions of the

project. You may

find it useful to have

them too.

On the next page are all of the ‘Contact’ sprite scripts. You can probably see why they required a sprite

to themselves even though a sprite graphic is not needed, only the transparent (invisible) one mentioned

earlier. I tried experimented with using sprite costumes and stamping them on the stage display for this

project but using the pen to create the contact graphics provided a much neater solution.

A critical addition to the main ‘Check for Contact’ script is checking if the ‘Sensor_Value’ is not in

range (showing 400) and then exiting the script if true. The ‘‘Set_Target_Pos’ block script does the

maths described at the beginning of this chapter to convert the sensor feedback into a contact position.

N.B. The centre of my ‘radar’ display screen is positioned at x 0, y -8, so adding -8 to ‘Ypos’ (in

‘Set_Target_Pos’) allows for this; and since the display has a diameter of 240 pixels then the script also

sets the ‘Max. Plot_Radius’ to 120.

The ‘Adjust_Position’ self-defined block script offsets the start position for the drawn triangle, enabling

it to be positioned evenly over the target position whilst the ‘Ping_Contact’ block script contains the

method I eventually devised to play the two second ‘Sonar’ sound successfully.

mBot and Me
a Beginner’s Guide

Page 170 - mBot and Me - a Beginner’s Guide

 ‘Contact’ sprite scripts:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 171

Shown below are the ‘Lamp_Warning’ sprite scripts.

N.B. The ‘Warning_Off’ script had to be a ‘Broadcast’

message and not a self-defined block so that it could be called

by the switch sprite to set the warning lamp to show the ‘Lamp_Off’ costume.

 Next, are the sets of scripts for the three individual sprites required to display the three digits

of the ‘Bearing’ (angle of the ‘Sweep’) using the LED digits from my graphics library.

As mentioned earlier, one set

of these was saved as

.sprite3 file and this file

containing all of its costumes

and its scripts was imported

into this project.

On the right are the

‘Bearing_Units’ sprite

scripts’. N.B. the

‘Update_Digits’ script only

required minor modifications

to the imported original.

mBot and Me
a Beginner’s Guide

Page 172 - mBot and Me - a Beginner’s Guide

 Below is the single script required for the ‘Bearing_Tens‘ sprite and slightly below that, the single script

required for the ‘Bearing_Hundreds‘ sprite.

Finally, to complete this project, you need a

similar set of LED sprites to show the actual

distance from mBot’s ultrasonic sensor

to any identified target. Once I had

completed the scripts for all three of

the LED digit sprites shown above, I

duplicated each of them and renamed

them as ‘Range …‘ sprites. Shown below are the two modified scripts for the ‘Range_Units’ sprite and

below that, and shown (slightly smaller) are the modified single scripts for the two remaining sprites.

‘Range_Tens’ sprite

‘Range_Hundreds’ sprite

I hope that you have fun with

the complexities of this project.

N.B. It is meant to test you on

what you have learned so far!

‘Range_Units’ sprite

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 173

Chapter 20 - An mBot ‘Drawing Machine’ Project

It must be over sixty years ago when I first saw

a picture of and read about a ‘Harmonograph’ -

I tried to make one using ‘Meccano’, but it

didn’t work, but back then I was only ten!

After having seen the ‘KidsandChips’ mBot

powered version which I described in Chapter

18 (on page 159), I decided that it was long

overdue for me to have another go at a drawing

machine. The ‘KidsandChips’ version

described as a ‘Spirograph’ uses one of mBots

motors and drive wheels to rotate the paper

whilst the other motor and wheel uses a simple

crank to drive a couple of linkages to push-and-

pull a pen backwards and forwards over the

rotating paper.

N.B. A ‘Spirograph’ actually uses meshed gear wheels to generate the graphics, which this model does

not. I decided that I would attempt to make several mBot variants of the most commonly found

drawing machine types that use a ‘crank-arm’ to convert rotary motion into linear motion. These will

require hardly any mBlock scripting (other than that needed to start and stop the motors). However, they

will need virtually all of a working mBot to be dismantled to redeploy the parts required. These models

will also need many of the additional Makeblock components I have acquired (from add-on packs) too.

Some historical facts:

The 'Pantograph' (its earliest form was for copying writing and dates back to the early 1600’s) is a

mechanical linkage based on parallelograms so that the movement of one point or pen, in tracing an

image, produces identical movements in a second point or pen. If a line drawing is traced by the first

point, an identical, enlarged, or miniaturized copy will be drawn by a pen or other device fixed to the

second point for duplication, sculpture, minting, engraving or milling. In 1827 an English architect and

engineer, Peter Desvignes developed a machine to create elaborate spiral drawings intended to prevent

bank note forgeries. He called this a ‘Speiragraph’.

In the mid-19th century, the 'Harmonograph' (which cannot

conclusively be attributed to a single person) used swinging

pendulums to create geometric images. One pendulum moved

the pen back and forth along one axis whilst the other pendulum

moved the drawing surface back and forth along the other axis.

By varying the frequency and phase of the pendulums relative to

one another different patterns could be created to create ellipses,

spirals, figures-of-eight and complex Lissajous curves. Some

complex harmonographs also involved rotary motion too.

In 1908, ‘The Marvellous Wondergraph’ gear-based drafting

toy was advertised for sale.

no copyright infringement is intended with the use of this image

no copyright infringement is intended with the use of this image

mBot and Me
a Beginner’s Guide

Page 174 - mBot and Me - a Beginner’s Guide

In 1965 Denys Fisher first exhibited his very successful variation on this theme, a toy which he called

‘Spirograph’. This has now become the ubiquitous generic term for the generation of graphics using

mathematical ‘roulette’ curves technically known as hypotrochoids and epitrochoids.

With some simple

programming in mBlock 5 you

can generate a variety of

patterns of this nature and you

can find many examples of

such scripts if you look for

them in the Scratch Wiki. -

(shown here on the right is one

simple example of this):

Most programmes like this one

rely on drawing a polygon on

the stage using pen commands

and then moving the origin,

setting the amount of rotation

and number of repeats; &

often changing pen colour too.

In this example you can set the

value of the variables in the

blocks on the right of the

diagram by changing the value

in the block bubble and then

clicking the block before

clicking the green flag.

This ‘programming only’ solution however does not make use of your mBot at all and my aim was to

create mechanical drawing machines which could draw with a real pen on real paper.

I experimented with several variants of these machines, the first one very much simpler than the

‘KidsandChips’ version which had inspired me to start this project. Both of these use a moving arm or

arms operated by a crank to manipulate the pen and they also rotate the paper which generates petal-like

lobes. These types are generally known as ‘roulette’ drawings and are bounded by a circle, just like a

‘Spirograph’. As hinted-at on the previous page, your mBot needs dismantling to provide you with the

required components.

This did not take long. I removed the drive wheels, the motors, the line-follower module and the front

mini-caster wheel, leaving the ultrasonic sensor module in place and the mCore board inside its

protective casing (its cover) still secured to the chassis by, and supported on, four hexagonal 25mm brass

spacer pillars.

Despite my reluctance to destroy a working mBot robot; it is actually very rewarding to have all of its

components available (together with any other parts accrued from add-on component packs) to enable

you to experiment with mechanisms.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 175

I had in mind what I wanted to try first and it took me about five hours of happy fiddling to come up

with a working solution. It’s creation was quite literally a ‘top-down’ approach to model-making by

first working out how paper could be attached to one of the motors (using one drive wheel) whilst the

other motor and second drive wheel provided a crank-drive to a move a pivoting arm. The tyres were

then removed from the wheels. Without the tyres, the drive wheel are 58mm in diameter.

How to hold-down and support the paper on top of one of the drive wheels? I needed to fix something

to the gear wheel - carboard, too bendy; plywood OK but heavy; so probably some form of plastic then?

All of the images generated by this device would be circular. So circular in shape, what could I use?

I had a bright idea and sat an old Compact Disk (CD) on top of the drive wheel. It looked to be (at

120mm dia.) slightly too small, but it seemed a very neat and lightweight solution. I found an old

erasable/recordable CD I had used years earlier to store computer data and peeled off the sticky label

that I had added to it. This produced an unexpected bonus in that most of the shiny reflective recording

surface came off with it. After a few rubs with an abrasive washing-up pad the remainder came off too

leaving me with a very neat clear (with a blueish tinge) plastic disk, marginally scuffed by the scrubbing,

but perfect for the job.

I carefully measured across one of mBot’s drive wheels and the outer

ring of four holes seemed to be spaced at 48mm dia. centres. I used a

pair of odd-leg callipers to mark a circle 48mm dia. on to the CD. I

put the gear wheel on top to check that I could see the circle through

all four holes and clamped the wheel down on to the CD to use it as a

drilling jig to drill four 4mm holes through it.

I probably could have bought some countersunk headed screws to

make a neater job of bolting the CD to the drive wheel but decided to

use four of the 14mm x M4 screws that I had as part of my mBot

component collection.

The pan-heads of these were slightly raised (about 2mm) above the surface of the CD - and the CD (as

they do) had a hole in the middle, so I now needed to create a flat surface above the screw heads. I

decided on making a covering disk of two layers of 2mm thick cardboard (this was just about cuttable

into 120mm circles with sharp scissors).

Using my drilled CD as a template, I drilled through one circle of

cardboard (the bottom layer) with a 4mm drill using some old

plywood as a support. Removing the CD, I then used an 8mm dia. flat

bit to drill through each hole in the cardboard again to widen them. I

then glued the this disk to the second cardboard disk and as you can

see in the image on the left, the holes in the bottom layer create a

recess allowing the heads of the screws to be covered by the top layer.

I bolted the CD on to the drive wheel and intended to use ‘Glu Dots’

(thin sticky pads) to attach the two-layer cardboard sandwich to the

CD, but I couldn’t yet - not until after the drive wheel has been

attached to the spindle of the motor using its central self-tapping

 screw.

mBot and Me
a Beginner’s Guide

Page 176 - mBot and Me - a Beginner’s Guide

I was pleased with this CD and cardboard sandwich assembly which didn’t seem to add much to the

overall weight of the drive wheel once it was attached to the paper-drive motor. My plan for adding

drawing paper to the machine was to attach individual disks of paper to the flat cardboard top surface

using ‘Glue-Dots’ as required (and it is very easy to draw around another old CD, fitting three 120mm

circles on to one A4 sheet of paper and then cutting them to shape).

The second problem was how and where to mount the motors bearing in mind that the cable from each

motor is only approx. 160mm long; and to obtain power they need to reach to the M1 & M2 motor

connection sockets in the middle of the left side of the mCore circuit board. This means mounting the

motors to the rear of mBot’s chassis and at about the same height as the mCore board; unless the mCore

board is detached from its usual position on top of the chassis.

N.B. It is quite hard to extract the tight-fitting plugs on the motor cables from their sockets so it’s quite

important to use a small pair of ‘snipe-nose’ pliers to hold them firmly whilst removing or locating them

into the tiny sockets on the mCore board.

The two drive motors have just two mounting holes, 2,5mm dia. at 17mm centres apart and use two

M2.5mm x 25mm screws to attach them to either side of mBot’s chassis. Trying to attach them to

standard Makeblock components (plates, beams & linkages) is not straightforward since these all have

4mm dia. holes at 16mm centres! I was tempted to try increasing the holes through the motor casings

very slightly but didn’t dare to in case the motors were damaged; but with a bit of fiddling, the two

screws will just pass through every other hole in a beam or linkage. Not, good, but it works!

You should have enough

information from the next

few pictures to enable you

to build something similar.

On to the back of mBot’s

chassis I built the motor

support arm. This looks

like the picture on the left.

Keeping mBot as it is,

really helps to provide a

solid and steady base to

absorb the movements

generated by this project

The 25mm Brass pillar is

for the pivot point screw;

and as you can see, the M2

motor cable only just

reached its socket on

mCore.

Holding the pen firmly in these drawing machines is also a problem. The ‘KidsandChips’ model and

many others on the internet are rather wobbly, just relying on rubber bands to hold a pen against an

upright.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 177

I rather liked my first attempt, the ‘claw-

ended grab’ shown on the left, but I didn’t

think that this was firm enough and spent

ages trying to invent something better.

I was rather pleased with the one that

I finally settled on using. This is

shown on the right (at the far end of

the pivot arm) - which for the crank

to work correctly needs the pivot

point to move in a slot.

You can see clearly how I added a

slotted plate for this and the 135˚

angled plate that I used as the crank-

pivot point. The picture below

shows the two drive wheels added to

the motor support arm. The one in

the foreground has the CD bolted to

it - its cardboard top has been moved

for clarity.

The rear drive wheel has a

‘crank-pin’ passing through it.

This is an M4 x 30mm screw

held in place with a nut and

then a 10mm plastic spacer

added. When the arm is

finally added on top of this,

then it is held in place with an

M4 ‘Nylock’ nut.

The M4 x 25 screw used to

pass through the slot in the

arm and down into the brass

pillar to provide the pivot

point for the arm has a 2.5mm

plastic spacer on either side of

the slot.

mBot and Me
a Beginner’s Guide

Page 178 - mBot and Me - a Beginner’s Guide

With this very simple ‘roulette’ drawing machine, there are only two

ways to enable variations in the pattern generated. First, try varying the

paper speed (which widens or narrows the drawn ‘petals’) and then alter

the position of the crank-pin (which will give the arm a longer or shorter

stroke, lengthening or shortening the drawn ‘petals’).

Emma had a good idea. She suggested that we added one of her multi-

colour pens into the holder where we only then need to click a button to

change the pen colour - but finding one narrow enough to fit the holder

was not easy. We did try it with some success using a 4-colour pen. I

preferred the black pen, but she really did like her multicoloured option!

Despite being rather limited in what it can do, it is still worth making this

model before the slightly more complex build of the ‘KidsandChips’

version which was my original inspiration.

You should be able to see clearly how this model is assembled and how it

works from the picture below:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 179

To emulate the ‘KidsandChips’ version (which, with its second arm, can produce more pattern varieties)

required a rather more complex build. I started by removing the four screws that held mBot’s plastic

cover in place over the mCore circuit board and then re-secured the cover by adding a second set of four

25mm brass spacer pillars with their screw ends passing through the cover and into the threaded holes in

the brass pillars below. I used the largest hexagonal hole in the body of the little spanner to tighten these

- firmly, but not too tightly since they were compressing the plastic casing.

I then used two M4 x 8 screws to attach the end hole of a complete (160mm) length of 20-hole cuttable

Linkage to two brass pillars at the rear of mBot. Do not add any screws - yet into the front two pillars.

This will be done when you add the motor beam shortly. To the outer ends of each piece of linkage, I

added a 3-hole x 3-hole right-angle bracket using just one 8mm x 4mm Screw and Nut as shown above.

To give this construction some rigidity, you can also see clearly in this image that I added a 9-hole,

76mm 0412 beam to act as a bracing strut using two 8mm x 4mm Screws and Nuts (the bottom one

passing through the topmost hole of those that form a circular pattern at the front of mBot). I did the

same on the opposite side of mBot too. You will also notice that I added a further 3-hole x 3-hole right-

angle bracket to the just the left-hand side of mBot to provide a little extra width to the chassis base,

making a supporting ‘foot’ (fitting flush with mBots chassis base).

I used two 8mm x 4mm Screws and Nuts passing through the ‘M’ shape cut into mBots left side to

secure this in place. I did not need to do this on the opposite side since, as you will see on the next page,

the left side of the motor beam assembly overhangs a little more than it does on the right and the one

remaining right-angle bracket at my disposal was required elsewhere in the model.

mBot and Me
a Beginner’s Guide

Page 180 - mBot and Me - a Beginner’s Guide

The motor beam is constructed from three 9-hole x 2 (Code I1) Slotted Plates with the motor for the

paper rotation wheel mounted below it (to get it the wheel as low as possible) and the motor for the drive

crank mounted above it to get the wheel as high as possible so that the crank linkages (and pen carrier)

would pass easily above the rotating paper.

When I started constructing this, I found that when mounting the

paper rotation motor underneath one of the 9-hole x 2 (Code l1)

Slotted Plates, it didn’t quite sit flat under the beam. This was

because the both sides of the motor have a clip which is raised

slightly (about 1mm) higher than the body of the motor (see the

diagram on the right).

N.B. These two clips secure a plastic cover (end-cap) which

protect the motor terminals. So, decision time, file down the clip

or what … ?

I decided that the simplest solution was to modify one of the

slotted I1 plates (shown on the left) slightly by using a

needle file to cut a small chamfer in the inner slot of the plate

(between the second and third holes in from one end - as

shown here) - just a small adjustment like this, on just one

plate, allows the motor to sit flat. This was very easy and

has not prevented the plate from being used in any other

way. The paper rotation motor is attached to the modified I1 plate with its spindle in line with the plate

(using the end two holes) and using the same two bolts that were used to secure it to mBot’s chassis.

The motor for the drive crank is mounted at right angles across the second I1 plate using the second and

fourth holes on the back-edge of the plate; and once again, using the same two bolts that were used to

secure it to mBots chassis.

The axles on each of the motors

should both point upwards.

The two plates with their

motors attached are then joined

together using the third 9-hole

x 2 (Code l1) Slotted Plate

using just four 8mm x 4mm

Screws and Nuts.

The picture on the right shows

the motor beam fully

assembled - but is shown from

the underside. Do note the

positioning of the long bolts passing through each of the I1 slotted plates and more importantly note the

separation of the two motor plates by the central holes in a third (central) slotted plate. You should also

be able to see that the paper rotation motor has its weight much further out to the left of centre - hence

the addition of the aforementioned supporting ‘foot’ to the left side of the chassis base.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 181

I positioned the motor beam centrally

on top of the completed chassis base

unit and used two 14mm x M4 Screws

passing through the two overlapping

thicknesses of the I1 plates and the

longitudinal cut linkages. The screws

go through the holes in the rear of the

motor beam assembly and can be fully

tightened into the brass pillars below.

This created a solid assembly and

although not strictly needed, I added

two extra 14mm x M4 screws through

the front two holes in the two

overlapping thicknesses of the I1 plates

and the longitudinal linkages, securing

them with M4 nuts underneath.

This looked much neater as you can

see in the image on the right.

You can also see in this image that to complete the support system needed for the pen carrier and crank

linkage pivots, I added two more 25mm hexagonal brass pillars to the front ends of the longitudinal cut

linkages securing them underneath the angle brackets with two M4 nuts and on top of these pillars I

added a 10-hole, 90mm 0412 beam.

Next, I fitted the two drive wheels back on to the axles on each of the motors, securing them with the

small self-tapping screws carefully saved when mBot was disassembled earlier. I then connected each

of the motors to the mCore board using socket M1 for the paper rotation motor and socket M2 for the

linkage crank motor.

I used my paper support plate (CD /

cardboard assembly) from the last

model and used the same pen holder

from that model too. You should be

able to work out from the picture on

the left and the one shown at the top

of the next page how the arm linkages

work.

Do aim to keep all of the arm

linkages as horizontal as possible.

N.B. The primary pivot post needs

more height to position the pen arm

correctly - use a 20mm x M4 screw

with 2mm spacer on top of the pen

arm and 10mm spacer underneath it.

mBot and Me
a Beginner’s Guide

Page 182 - mBot and Me - a Beginner’s Guide

The M4 threaded hole in the top of

the brass pillars is 9mm deep and

works well here. With the primary

pivot positioned in the eleventh

space (from the outer end of the

pen arm) puts the pen, more-or-

less, over the central axis of the

paper rotation motor – you might

get a small circle created here if it

is not perfectly central.

Moving the primary pivot position

into the 12th, 13th or 14th hole

positions on the pen-holder arm

causes a fully drawn pattern to

create a circle created by the

overlapping lines with a radius

equal to the pitch of the holes in

the linkages (8mm).

The secondary pivot on top of the

crank arm uses a 14mm x M4 screw with a 2mm spacer on top passing through the pen arm and screwed

firmly tight with an M4 nut underneath it. Fifth space (from the outer end) on the pen arm and sixth

space (from the outer end) in on the crank arm seems to be a good place to start.

All of the 25mm brass pillars have an M4 threaded hole in the top & these holes are 9mm deep. Use a

14mm M4 screw in the top of the secondary pivot and a 22mm M4 screw in the top of the primary pivot;

these should stop firmly at the bottom of the hole (providing a bit of friction to prevent them from

unscrewing) and leaving just enough movement for both of the linkages to turn freely. Use an M4

Nylock nut on the underside of the secondary pivot to fix it firmly to the crank linkage; since this needs

to be repositioned to create different patterns, I used an M4 wing nut to do this.

For the crank fitted to the outer ring of holes in the crank-wheel, I attached the linkage using an M4 x

22mm screw with a 2mm spacer on both sides of the linkage and an M4 Nylock nut on the top. Check

the screws on top of the two pivot pillars are tight - the primary pivot of the pen arm, especially, can

work loose.

All drawn output from this model will still produce variants on the ‘petal’ theme. As before, increasing

the paper motor speed creates a wider spacing of the lines whilst decreasing it produces a finer spacing.

Repositioning the pen arm on the top of the primary pivot moves the pen out further from the central

axis giving a larger diameter central ‘hole’ where the created patterns create a circle at the centre of the

‘petal’.

Finally I tried a totally different type of drawing machine to the two rotating paper ‘roulette’ types

outlined above. This turned out to be very much simpler to build, to experiment with and so much

more satisfying to watch in use. In this model variant, the paper remains fixed whilst mBot’s two

motors drive a linkage system via two rotating cranks to push-and-pull a pen across the paper.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 183

This type of model is generally referred to as a ‘Pintograph’ and there are many examples of these to be

found on the internet. I found a particularly useful website created by American, Wayne Schmidt where

one of his pages explains the practicalities of pintograph construction and use in some considerable

depth. This can be found at:

http://www.waynesthisandthat.com/pintographs.html

‘Pintographs’ are really harmonographs that use electric motors instead of pendulums to move a pen to

create detailed line drawings (Lissajous curves). Varying the motor drive systems and arm linkages will

create unique images. It's possible to have several sets of arm lengths for a pintograph machine so they

can be changed over to create different designs; and by carefully selecting the start & stop points or

stopping a drawing part-way through its drawing cycle an even wider variety of designs can be created.

‘Pintographs’ come in two basic forms, either the ‘Straight Arm’ or the ‘Scissor Arm’ type, each

producing similar images. The main difference between them being that the ‘Scissor Arm’ amplifies pen

movements to produce larger drawings in the same way as pantographs enlarge drawings. More

importantly, they also create designs radically different from anything produced by ‘Straight Arm’ types.

Both model variants are shown in illustrations on the next two pages.

The relative motion of the cranks (which must rotate at slightly different speeds) generate harmonic

relationships, with the pen being continually being moved along different paths bounded by four

extreme points. With Pintographs, the faster motor will eventually catch up with the slower one; so

drawn figures will eventually repeat themselves if the machine is left to run for long enough. Ideally

one motor should rotate one-tenth of a revolution faster than the other. Otherwise, if a pintograph

has both motors running at exactly the same speed, then they will push-and-pull the pen repeatedly over

the same path creating a (more-or-less) single solid line!

It's critical therefore to balance the speeds of the two motors. If the speed difference between them is

too great, then the lines will be so far apart that lines won't appear to flow smoothly; but if the motor

speeds are too close then the lines will be inclined to overlap as a solid mass of ink.

I found it comparatively easy

to mount mBot’s two geared

motors onto either end of the

basic chassis using two 3-hole

x 3-hole right-angle brackets

as shown on the right. Once

you have fitted the two drive

wheels back on to the motor

spindles (and located them

with their little self-tapping

screws, then that’s it!

This is all you need to do to

create a pintograph drive-unit

to which you can add two or

four arms made from standard

(160mm) lengths of 20-hole

cuttable Linkage strips.

http://www.waynesthisandthat.com/pintographs.html
http://www.waynesthisandthat.com/harmonographs.html

mBot and Me
a Beginner’s Guide

Page 184 - mBot and Me - a Beginner’s Guide

I decided to continue using my fairly successful pen holder clamp (shown in the illustrations of the

previous two models). You can experiment with you own pen holder ideas here very easily, just as you

can with the many variants of two-arm or four-arm (scissor) pivot points and crank positions. It is worth

noting here that all of your arm assemblies are a separate entity to the pintograph drive-unit described at

the bottom of the previous page - you just need to connect the two together - a suitable crank pin

attaching the drawing arms to the two drive wheels.

I did experiment with using screws (with plastic spacer washers and lock nuts) as the crank pins for my

early models but they were so tedious to undo each time that you wanted to separate the arms from the

drive-unit or to change crank pin positions that I substituted them for two of the longest (15mm) Plastic

Peg Rivets that I had. These worked surprisingly well, enabling me to extract them quickly and they

stayed in position (mostly) whilst drawing was in progress.

I also tried using Plastic Peg Rivets in lieu of screws and nuts to make quick-change pivot points for the

pintograph arms, but these became loose far too often; so (as you can see below) using screws with

plastic spacers and lock nuts on the arms is the only real option for model reliability.

The final problem to solve, was the height of the drive cranks. Because of the positioning of the motors,

the top of both drive wheels is approx. 60mm above the base of mBot’s chassis. I tried extending a pen

down through my pen holder clamp this far and whilst it did work, its leverage on the arms of the

Pintograph was excessive. The only solution was to make a purpose-built paper holding platform about

50mm high and the same dimensions as a piece of A4 paper (see the illustration below). A solid piece

of thick (18mm) plywood cut to match provided the top, this was supported on two strips of timber to

gain the height required. I then added two ‘Bulldog’ spring clips to hold the paper in place.

This worked very well and had the great bonus of firmly holding the paper steady whilst drawing.

Scissor Arm Pintograph

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 185

Remember, the drive unit is a separate entity used to pull and push all variants of Pintograph arms and

for some arm combinations, the drive-unit would (thanks to the overall weight of the chassis assembly)

remain unmoved - but - for some combinations, the push/pull action of the arms would move the drive

unit about a bit. I could have connected mBot’s chassis (the drive-unit) to my wooden paper holder

somehow but this would have made the whole thing rather cumbersome and unwieldy to move.

I resorted instead (as you can see in the illustration at the bottom of the previous page) to adding a

weight to the top of mBot in the form of a block of steel (50 x 25 x 75) that I just happened to have.

This worked very well and stopped the drive unit from being moved by the action of the drawing arms.

For all of my drawing projects I used

the two very simple scripts shown on

the right to start and stop the motors.

Note that for this model, one motor is

set (as mentioned earlier) to be 1/10th

faster than the other.

Using keyboard key-presses to start

and more importantly, stop the

motors in a hurry was important too.

Running mBot’s TT geared motors at 25% is the lowest you can go without them stalling; but under the

extra load from the pintograph arms (dragging a pen), my recommendation is to set one motor to 30%

which is about 2 secs per revolution (speed 76/255) and the second motor to 33% (84/255).

Changing the

rotational

direction of the

motors (or

preferably just

one motor), the

crank radius, the

arm length, the

clamp pen

position and pen

weight pressure

all affect the

final drawing.

N.B. If there

isn't enough

weight on the pen, then it may lose contact with the paper, creating areas of the drawing which are too

lightly drawn, or even missing altogether. The position of the pen relative to the pivot point at the outer

end of the arms has an enormous influence on the drawing too. Many pintographs have their pens

slightly offset to one side of the pivot and pens can also be positioned inside or outside the pivot point.

Reducing the crank radius compresses the image whilst increasing the arm length stretches the image

left and right and compresses it top to bottom. Do experiment with all of these model concepts.

Straight Arm Pintograph

mBot and Me
a Beginner’s Guide

Page 186 - mBot and Me - a Beginner’s Guide

Appendix 1 - mBot ‘add-on’ component - LED Panel

MakeBlock Model No. 13412 - the LED matrix display board

‘LED Panel' is the name now given to

Makeblock’s 8 x 16 LED Matrix display

board. It was initially designed to show

simple bitmap graphics to provide a ‘face’ for

mBot (to be mounted above the little mouth

shape cut into the front of mBot’s chassis as

shown on the right). Previously therefore, it

was known as just ‘Face’. Matrix is word that

describes a rectangular array of anything

arranged in rows and columns. This is a good

first purchase ‘add-on’ and very many mBot

users really do recommend it. It cost me about £10 + £3.50 UK postage.

Begin by removing the protective paper from the diffuser plate and attach the plate to the LED matrix

board with four little plastic pegs (as shown above right) and then connect the LED panel to port1 of

mCore. The LED matrix assembly can then be attached with two M4 bolts to the robot as shown.

The mounting method shown in the illustration above is fine if you just want to give mBot facial

expressions (or ‘emotions’), but you must disconnect the ultrasonic sensor to fit it here, which is not a

good option in my opinion!

My own solution was to drill two 4mm holes @

15mm centres through a spare 4 x 2 stud Lego

building-block filched from Emma’s toy box.

See the diagrams on the left.

A single Lego block with the LED matrix display bolted

to it fitted neatly on to the studs moulded into the top of

mBot’s cover (but why are they in a 5 x 3 configuration? -

possibly because the two centre studs are on the centre-

line of mBot I guess? Whereas all Lego stud plates are in

a ‘multiples-of-two’ matrix).

A single asymmetric block looked a bit odd; and this was

fine on its own, but by adding several more purloined

bricks to build the small wall shown in the diagram above

it became a much stronger mounting beam that neatly

spanned the five studs on mBot. Emma can always get the

Lego blocks back - eventually!

See the illustration above right. The LED Panel is quickly and easily removed for storage too (and for

disassembly I fitted the two M4 x 25mm bolts with M4 wing nuts). The Lego mounted LED Matrix

display can be easily fitted facing forwards, backwards or sideways on the studs on mBots cover and is

very useful when displaying feedback from the sensors. I use this a lot, but I’ve not seen any web or

other reference to anyone else mounting mBot components in this way.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 187

MakeBlock’s LED matrix display board is described as 8 × 16 (read ‘eight by sixteen’), because there

are eight rows and sixteen columns of individual little Light Emitting Diode lights which can be turned

on and off using the ‘shows image’, ‘shows text’, ‘shows number’ and ‘shows time’ stack blocks.

Remember, you need to be on the ‘Devices’ tab to use these robotics blocks. If you drag any of the

‘show image’ stack blocks from the ’Show’ blocks category on to the ‘Scripts’ Area and then click on

the little box with the two blue oval ‘eyes’ showing then it opens-up the edit ‘Panel’ (see below):

This is much improved from

previous versions. There are ten

samples here to choose from but

it’s fairly intuitive to use and you

just click on the blue circles to

light-up or clear a representation

of each of the individual diodes of

the ‘Panel’ display to create your

own image; it’s rather like a huge

pixel painting screen. You just

press the ‘floppy disk’ icon to save

your creation and add it to the list.

Emma loved doodling on this

using my Surface Tablet’s touch

screen and was (as you can see

left and below) instantly at home

creating pictures. MakeBlock

describes these ‘Panel’ images as

‘emotions’ .

mBot and Me
a Beginner’s Guide

Page 188 - mBot and Me - a Beginner’s Guide

 Several of the pre-defined ‘emotions’ are ‘eye’ graphics

(just like the ones shown in the simple script on the right).

This script illuminates the LED matrix with each chosen

‘emotion’ and then uses a ‘wait’ block (set to 1/10th second)

after each in turn to create a simple animation and then turns

the display off at the end of the sequence.

Try making this and the variant shown below. It too shows

the same four simple ‘eye’ graphics, but this time it uses a

different stack block which includes a timer (also set to

1/10th second).

The four blocks are all inside a ‘repeat’ block

which is set to repeat the animation ten times

and in doing so, it creates animated

‘blinking’ eyes. This is a much neater

solution to the first script, so learn from this

and choose from block categories wisely!

Shorter scripts are more efficient.

You can create many animation sequences like

this with your own graphic creations.

There are also four rather useful ‘shows nnn’

stack blocks in the ‘Show’ blocks list (three of

these are shown on the right) - the first is for

displaying numbers - up to four digits (feedback

from sensors etc.). The last block will display a

time value (set by script values perhaps?).

There are two that can be used to display user or script generated text (upper or lower case BUT only

three characters at any one time. You can try experimenting with the middle of the three blocks shown

above, changing the values in the x: bubble window. Try giving x: the value ‘2’. You will find that this

puts a two-character message e.g. ‘Go’ in the centre of the LED matrix panel.

You can use these ‘offset value’ settings to usefully ‘scroll’ much longer pieces of text across the LED

panel using an (x = x - 1) repeating loop. An example of this is shown at the top of the next page. You

will see that it moves the text (rather slowly) to display any message longer than three characters. It

needs a very short (0.01 sec) ‘wait’ block timer inserted into the script to allow the LED Panel time to

refresh itself - and it will not work without this short pause! You can also try something similar (see the

next page) by using a (y = y + 1) repeating loop to ‘scroll’ text downwards.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 189

 Start by making two simple

‘Variables’ called 'x' and ‘y’ and then

build and test the script shown on the

right substituting your own text

characters to suit (sadly, this seems to

be limited to 19 chars. max.):

N.B. This script will stop after 19

characters have scrolled past, but you

may need to click the ‘stop’ button

(or the script ‘hat’ block) to halt the

script if the text is very much shorter.

The script shown below is a variant

of the one above right and will scroll

the text ‘Go’ vertically downwards

(starting above the LED panel and

exiting below it).

Downward scrolling is a good demo. - but

not actually very useful! Do note how the

‘If’ block loop in both scripts exits the

‘Forever’ block loop.

The ‘shows number’ stack block is very

useful. It performs rather better than the

‘shows text’ stack block since it can display

up to four numbers on the LED matrix panel.

This block is therefore a good way to

displaying numeric feedback from sensors

rather than just having feedback displayed as

a Variable on mBlock’s ‘Stage’.

It’s worth noting here that you can position

numbers on the LED matrix (just as if they

are text characters).

If you insert numbers into the ‘shows text’ stack block then you can offset the position of those numbers

by inserting a suitable value into the (x:) window; but you can only show up to three characters doing

this - but useful perhaps if you want to centrally position just one or two digits.

Do remember though that the generally much more useful ‘shows number’ stack block displays up to

four numbers.

The 8 x 16 LED Matrix display ‘Panel’ can be a very useful output device - that is until you can get your

hands on the rather desirable Me 7-Segment Display module which will do a similar job so much better!

mBot and Me
a Beginner’s Guide

Page 190 - mBot and Me - a Beginner’s Guide

To demonstrate the number-offset trick

using the ‘shows text’ stack block

mentioned on the previous page you first

need to make a Variable called ‘Counter’

and then create the script shown on the

right.

This script uses ‘5’ in the repeat loop as

an ‘offset x value’ to position a single

digit in the centre of the LED Matrix

display; but first the script checks to see

if the counter has two digits and if it does

then it sets the ‘offset x value’ to ‘2’.

We first wrote this using the mBlock 3

version of the software and Emma was

very taken with this countdown timer

routine. She insisted that we added a

sound file named ‘bang’ at the end. In

her version, she also added a ‘shows

image’ stack block with the ‘Firework’

display image shown below:

I didn’t think much to it, but she thought that it was brilliant and created loads

more images to try. The LED Matrix display ‘Panel’ really got Emma into

thinking about scripting for herself - what a result!

It was not possible to add this sound file into the mBlock 5 script shown above (because sounds are only

possible when they are called by a ‘Sprites’ tab script) - and here we are on the ‘Devices’ tab!

But by now, we know all

about ‘Broadcast’ messages

(see Chapter12 - page 76)

so this is easily fixed …

… I switched to the ‘Sprites’ tab and uploaded the same sound file into my ‘Sound Library’ and created

the two-block script shown above left. Next I returned to the ‘Devices’ tab and added the three blocks

shown above right to the main countdown script listed at the top of the page.

I positioned these three blocks below the ‘repeat’ loop and above the ‘clears screen’ stack block. (The

‘wait’ 2 seconds block has been added here to match the length of the sound file, so that Emma’s

‘Firework’ image is ‘extinguished’ as soon as the ‘bang’ sound file ends).

The script shown at the top of the next page uses a Variable named ‘Distance’ to take the reading from

the ultrasonic sensor and convert it into millimetres. It then displays (in real-time) the reading as

continuous feedback on both mBlock’s ‘Stage’ and on the LED Matrix ‘Panel’.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 191

You do not have exhibit a

Variable on the stage (or

even use a Variable at

all) if you don’t want to.

As you can see in the

modified script below,

you can just put the

nested block sequence

(that rounds the

ultrasonic sensor reading)

directly into the ‘shows number’ block to get an instant reading on the LED matrix display panel.

This is a shorter script, but it does make sense to (and I always do) store feedback data in a Variable; so

out of the two scripts above, my preference is for the first one.

The script on the

right uses the

‘shows image’

stack block used

in conjunction

with feedback

from the

ultrasonic sensor

to create an

animation (of

sorts).

This animation script also makes use of the Variable created earlier, called ‘Distance’ and some complex

nesting of blocks.

It uses the ‘Reporter’ block, ‘Round’ from the ‘Operators’ blocks category twice to produce an integer

for the y value position which decreases the closer the sensor gets to an object.

The LED Matrix ‘Panel’ starts by showing nothing and then as the y values decrease it begins to show

the image scrolling upward a row at a time. The full image is displayed when ‘Distance’ = 0 and if

‘Distance’ (the sensor value) starts to increases once more then the image begins to scroll back down

again.

mBot and Me
a Beginner’s Guide

Page 192 - mBot and Me - a Beginner’s Guide

Try experimenting with the script shown on the right.

You need to create a user-defined block (see pages 41, 42 & 64)

for more on this). Call it ‘Scroll_Text’ and add two input

settings when it is defined; a string input called ‘Text’ and a

number input called ‘Delay’.

These input settings will

give your defined block

(‘Scroll_Text’) two little

bubble windows.

Here you can enter the

required Variable data,

‘Message’ and ‘Counter’

(see above).

This is a marginally complex script, but it’s definitely worth experimenting with this concept.

Finally, we updated (very early on in our programming journey) Emma’s favourite self-programmed

games at that time, “Dice” and "Rock / Paper / Scissors" to take advantage of our newly purchased LED

Matrix display panel.

As you will probably be aware by now

(from reading Chapters 11 and 12) we did

eventually take these games to much

higher levels than those outlined below:

To experiment with your LED matrix panel,

I suggest that you load the project files you

created for these and modify them

accordingly. The script shown on the right

sets a 'Random' Variable between 1 & 6 and displays it on the LED Matrix 'Face'. Setting the x value to

‘5’, positions the single random number in the centre of the display. This script (and the one at the top

of the next page) also make sensible use of the ‘Hat’ block ‘when nnn key pressed’.

The script at the top of the next page is an updated version of our earliest attempts at the "Rock / Paper /

Scissors" game. Here the script sets another 'Random' Variable - this time, a random number (between 1

& 3) and based on this number will select from a list a matching graphic to display on the LED panel.

The concept of ‘Lists’ is featured on page 68. This page describes the use of a ‘Useful List’ lookup table

containing:

1 Rock

2 Paper

3 Scissors

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 193

Another early version of this game (see page

69) was activated by using the ultrasonic

distance sensor connected to port3 rather

than the ‘Green Flag’ or a keyboard

keypress.

It is not too difficult to add a new Variable

called ‘Distance’ to the script on the left, and

then modify it with a ‘forever’ loop and an

‘if … then’ loop.

The nested block sequence needed to poll the

sensor is then added and finally a sequence

of blocks (needed to wipe everything after a

two-second pause) is added to the bottom of

the script.

This modified game script is shown below:

The three LED 'Emotion' graphics that

you need for both of these "Rock /

Paper / Scissors" projects are shown

here too:

mBot and Me
a Beginner’s Guide

Page 194 - mBot and Me - a Beginner’s Guide

Appendix 2 - mBot ‘add-on’ component - Servo Pack

Makeblock Model No. 98052 – the basic Servo Pack

The mBot Servo Pack is an ‘add-on’ (3-models-in-1) kit. The MakeBlock advertising blurb for this

pack says that you can, with the components it contains, construct either a ‘Dancing Cat’, a ‘Head-

Shaking Cat’ or a ‘Light-Emitting Cat’. It suggests that these additions make the robot more enjoyable

and benefit children's creative thinking.

The information contained in this pack is however minimal! Nevertheless if you buy it from China, it is

an absolute bargain! Mine arrived trouble free in only four days and only cost approx. £10 inc. free

postage via Royal Mail.

The little manual that comes with the pack essentially only shows a sequence of graphics (very similar in

style to the original mBot manual) showing how to modify mBot to create the so-called ‘Dancing Cat’

model. Sadly, construction details of the other two models are NOT included here. It is not as

enticing as it sounds either; the servo unit is used in this model to just waggle a 16mm length of cuttable

linkage up and down in a see-saw motion suggesting ‘waving paws’.

There is also a diagram in the booklet showing the fitting of the Micro Servo on to its Bracket Plate and

then fitting the Servo Arm - but the booklet contains no information on how servos work or how they

should be tested or safely operated. Much more importantly, there is no hint of how to programme

any of the three models. However, after much on-line searching and false trails I eventually solved

the whereabouts of the elusive instructions - see pages 196 & 197 for more on this.

BUT - having said all of the above, you do get an awful lot of bits for your money in this add-on

pack. The most useful aspect of buying it (almost certainly) is the gaining of the extra construction bits

that you will enable you to experiment with your own robot creations. Everything that the pack contains

is laid out below):

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 195

The most useful addition to your toolkit is probably the Mini-Spanner (or ‘Wrench’ as MakeBlock

describe it). This complements the excellent double-ended (Posi-drive & 2.5mm Hex) screwdriver that

comes with the original mBot kit and most importantly now allows you to tighten up the fastenings on

your robot kit without needing to hold the nuts with pliers!

Why, oh why was it not included in the original kit rather than having one distributed in every add-on

pack (meaning that I now have four!)? The spanner/wrench has a 5mm A/F slot at one end and a 7mm

A/F slot at the other; this end is a little loose, but OK for M4 nuts. There are three more holes for

smaller sized nuts situated in the body of the spanner.

In this add-on pack’s component parts are several shiny anodised (Makeblock blue) plates, brackets and

cuttable linkages. There are two 3-hole x 3-hole Right-Angle Brackets, two 9-hole x 2 Slotted Plates

(Code I1) and four 160mm lengths of 20-hole (cuttable) Linkage. There are also four M4*25 brass

extender studs (identical to the four that raise mCore above mBots battery pack in the original robot kit).

These are so useful for spacing both Me boards and component parts anywhere in a construction.

Also in this pack you get:

20 × M4 x 8 Screws

10 × M4 Nuts

6 × 2mm x 7mm dia. Plastic Spacers

2 x M2 x 10 Screws & Nuts (for attaching the Servo to its Bracket Plate)

2 x 2.2 x 6.5 self-tapping Screws (for attaching Arms to the centre of the Servo spindle)

2 x 2.2 x 8 self-tapping Screws (for attachment of linkages to Servo Arms)

Whilst this is nothing to do with servos, you get one Me series RGB-LED V1.1 circuit-board module

which has 4 little (but full colour) ws2812 RGB LEDs. This is needed for the ‘Light-Emitting Cat’.

model. With the modules own integrated chip you can control each little LED individually from your

programmes to adjust both brightness and colour by mixing different amounts of red, green, blue light.

Finally, you get the important bit, the 9g Analogue Micro Servo set (one Servo complete with 3

different Servo Output Arms, a rectangular Servo Bracket Plate and a circular Arm Attachment Plate).

Servo output arms are sometimes called ‘servo horns’ and have a specific spline size - this pack contains

a single-ended horn, a two-point (double-ended) horn and four-point (unequal lengths) horn.

To connect the servo you also get one Me series RJ25 V 2.2 Adapter circuit-board which converts mBots

standard RJ25 connector to two common signal connectors (for controlling two servos). This board

contains both a power interface and a signal interface and is used to connect the supplied Micro Servo to

mCore via a 6P6C RJ25 (20cm) cable. You get two of these cables included in the pack. This adapter

can also be used to connect other suitable Me series modules such as the Me Temperature Sensor

module.

A servo is a type of motor that can be used in many ways. They consist of a potentiometer and a motor

connected to the output spindle, using built in circuitry to accurately control angular movement of the

spindle. The output spindle can be positioned to specific angular positions by sending the servo a signal

of how far to turn. Small servos have traditionally been used in radio-control applications to position

the control surfaces (elevators & rudders) to fly model airplanes or to control the power and steering of

model cars.

https://www.jameco.com/webapp/wcs/stores/servlet/JamecoSearch?langId=-1&storeId=10001&catalogId=10001&search_type=jamecoall&freeText=potentiometers

mBot and Me
a Beginner’s Guide

Page 196 - mBot and Me - a Beginner’s Guide

So, all-in-all, that’s a lot of stuff for a tenner or thereabouts and the circuit boards & cables if bought

individually would add up to much more than that alone - as I said earlier, it doesn’t seem to be well

supported with paperwork instructions, but nevertheless this pack is an absolute bargain!

My own design concept for the ‘Dancing Cat’ model requires a second servo to raise its tail! - (see page

nnn). I intended to buy another of these bargain servo packs to double the parts that I have just

described on the previous page (the Adapter circuit-board would be surplus to requirement since one

board can drive two servos) but at the price, still worth it to gain a second servo and all the other bits!

Sadly, about a month later when I tried to get a second pack they were sold out and unavailable (I’m not

surprised at this price). Eventually (about two months later) I did get another Servo Pack; this time for

£15 inc. UK postage - but I still consider this to be a bargain!

Mounting & Testing the Servo:

Remove the protective paper from the rectangular Servo Plate (which is made from beautifully machined

acrylic).

Attach the Servo Unit to the Servo

Plate by fitting it into the rectangular

recess then bolting it in to place with

the two M2 * 10 Screws & Nuts

provided. These fasteners are very

small and hard to manipulate with large

(or small and inexperienced) fingers.

For info., the smallest hole in the

handle of the spanner is M2 Nut size.

Following the ‘Dancing Cat’ build

instructions (as detailed in Appendix 3)

I started by removing the two screws from the rear of mBot’s protective case and replaced them with

two M4*25 brass extender studs (see the illustration of the complete assembly at the top of the next

page).

Next, I selected a 9 hole x 2 I1 Slotted Plate and bolted a 3-hole x 3-hole Right Angle Bracket to its

centre using just two M4 x 8 Screws and Nuts in the frontmost holes only. To this assembly I added a

second 9 hole x 2 I1 Slotted Plate mounted on the inside if the angle-bracket with two more M4 x 8

Screws and Nuts. I bolted the RJ25 Adapter circuit board on one side of (and at right-angles to) the first

horizontal, I1 Slotted Plate. The adaptor was mounted next to the angle-bracket using just one M4 x 8

Screw and Nut in the hole closest to the angle-bracket (leaving the outer hole free for use later).

I then added two M4*25 brass extender studs to the second (vertical) I1 Slotted Plate using the fourth

pair of holes (the ones just above the angle-bracket) securing them in place with two M4 Nuts.

Onto these two extender studs, and using two slightly longer (M4 x 14) Screws, I was able to mounted

the Servo Plate; with the Servo body fixed horizontally as shown in the diagram above - the screws

passing through the two slots in the acrylic plate

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 197

The Servo was then connected to its RJ25

Adapter using slot2 (the nearest one of the two

connectors to the angle bracket) after winding the

length of surplus wire tidily around the upright

bracket and plate.

Finally I attached the complete assembly

(described on the previous page) to the two

M4*25 brass extender studs which I had fitted to

the rear of mBot’s protective case - the Servo unit

pointing forwards over the centre of the case. The

left-hand side of the assembly required only an

M4 x 8 Screw to attach it to the extender stud,

whilst the right-hand stud needed a longer M4 x

14 Screw since it needed to pass through the outer

hole in the adapter board as well as the supporting

I1 Slotted Plate at the base of the assembly.

The RJ25 Adapter was connected to port4,

leaving port2 and port3 connected exactly as they

were in mBot’s initial configuration and port1

was left empty.

N.B. The servo mounting configuration (shown

above right) is exactly as specified for the ‘Dancing Cat’ model - see Appendix 3 on page nnn)

Setting the initial angle for the servo is important, so

with the servo now connected to mBot, I created and ran

the script shown on the left to set the Servo spindle’s

angle to zero (0º) degrees.

The servo rotates it’s spindle in an anti-clockwise

direction up to a maximum rotation angle of 180º

degrees. The arm will always return in a clockwise

direction to reset itself to zero (0º) degrees after use.

You must zero the spindle before you fit one of the servo

arms. You can then position the servo arm on its splines

setting its zero-position angle according to the nature of the

task that you intend to carry out.

So at this point, and only now, should you attach one of the

white Servo Arms supplied (as shown in the diagram on the

right). Use a 2.2 * 6.5 self-tapping Screw to attach the arm to

the centre hole in the Servo spindle (once again, these are

very hard to manipulate with large (or very small and

inexperienced) fingers.

mBot and Me
a Beginner’s Guide

Page 198 - mBot and Me - a Beginner’s Guide

• Remember, the Micro Servo unit can rotate its Arm through approx. 180º and no further.

• Do beware too that the 9g Analogue Micro Servo supplied in this add-on pack is not as

strong as a standard radio-control servo (but its fine for mBot models if treated

carefully).

• The Arm only grips the Servo’s spindle by small splines in the plastic, so it can be

damaged (as can the Servo motor itself) if too much force or leverage is applied.

I fitted the a two-point, double-ended, horn (shown at

the bottom of the previous page). I suggest that this is

the arm to use for most model options and that you

centre it either horizontally across the middle of the

Servo (parallel to the top of the Arm-Attachment

Plate) or vertically (at right angles to the Plate).

After initial calibration, you should test the Servo with

a simple programme similar to the one shown on the

right; to check that the servo arm moves as expected:

I was by now keen to start building and programming

the much anticipated ‘Dancing Cat’ model (Emma

LOVES cats!). This model also uses the two-point

(double-ended) horn and the instructions suggest that

the horizontal position of the Servo Arm should be set

not to 0º at but at 90º.

As mentioned earlier, with little information in the

pack (other than the ‘Dancing Cat’ build instructions)

I tried to find out more but finding detailed

information on-line about Makeblock’s add-on packs

was frustrating. Typically, the Makeblock forum

pages often show mBot owners individual frustrations

(which often elicited no response at all!). One such

comment posted was:

“Our daughter received her first expansion pack today and there are only

directions for one option, the dancing cat. She wants to do the head-shaking cat,

but there are no directions. Can you please help?”

Eventually after much on-line searching and false trails I found the model making instructions for

‘Dancing Cat’ and the missing instructions for the other Servo Pack models (the ‘Head-Shaking Cat’

and the ‘Light-Emitting Cat’). At the time that I was looking (mid-2018) these were well hidden in the

Makeblock website; but they are now more easily identified, and you can find these files fairly easily

yourself using the following link:

http://learn.makeblock.com/en/mbot-add-on-packs/

http://learn.makeblock.com/en/mbot-add-on-packs/

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 199

This link leads you to a web-page about mBot add-on packs

which also has building / programming instructions for other

add-on packs too (see the illustration on the right):

The programming files are all stored as .rar files (which I

guess might have been off-putting for some users in the past?).

A .rar file is a compressed file that holds other files inside it

compressed down to a much smaller size. These need special

software to open and extract the contents, nevertheless I went

ahead and downloaded the Servo Pack ‘Program.rar’ file.

The building instruction files are in .pdf format, so I also

downloaded the Servo Pack ‘Building Instruction.pdf’ file

which shows details about servo assembly & use and then (in

the following order) how to modify mBot to make three distinct

models: (1) ‘Dancing-Cat’, (2) ‘Head-Shaking Cat’ and (3)

‘Light-Emitting Cat’.

I decided to use the highly-regarded and much-recommended

open-source programme‘7-Zip’ which is totally free and a good

utility for unpacking many varieties of compressed format files. So (and with some trepidation) I

downloaded it and used it to extract the .rar files. There were no problems with this download and the

software was easy to understand so decompression of the .rar files worked well.

The downloaded package of programming files was entitled:

 mBot 动感扩展包_程序示例.rar which (using Google Translate) equated to MBot dònggǎn kuòzhǎn

bāo_chéngxù shìlì and translated as: “ mbot Dynamic Expansion Package _ program example.rar ”.

When the file was processed by ‘7-Zip’ it extracted a folder with the same name (mBot 动感扩展包_程

序示例) and this folder contained three mBlock 3 (.sb2) project files - but were they in the same order

as the building instructions? On examining these mBlock 3 files I was delighted to see that the script

blocks were the English language versions, but the comments call-outs describing them were in Chinese.

I was probably hampered a bit with the Chinese to English translations of both the filenames and the

comments contained within the files and in retrospect I now know that the contents of the downloaded

Program.rar file, are not in the same order as the downloaded Building Instruction .pdf file.

I was now able to load these three .sb2 files into mBlock 3 and edit the comments. The first comment

call-out from the first ‘The Kitten Looking Around’ file that I translated had the following flowery style:

“This program according to the angle of the servo installation is different, need to adjust the servo

angle value”. Not over-clear, but enough for me to work on to create rather more understandable

English translations. The translated comments for all three models were all very much in a similar vein,

but some more understandable than others.

The three files extracted from the download are itemised on the next page, whilst the mBot

modifications required to make the three ‘Cat’ model projects (the building instructions) and the

necessary mBlock 5 programmes to control them are described in the next three appendices.

mBot and Me
a Beginner’s Guide

Page 200 - mBot and Me - a Beginner’s Guide

File 1: 东张西望的小猫.sb2 - which equates to: Dōngzhāngxīwàng de xiǎo māo.sb2 and translates as:

‘The Kitten Looking Around.sb2’

This file contained a large complex script headed by an ‘mBot Program hat’ block (signifying uploading

it to Arduino for ‘Off-line’ use). It has a 'disco' stage backdrop & a single sprite (named ‘mbot’). The

false impression given by the ‘Stage’ background graphics - ‘a disco, with lights’ confused me!

It took me some time to work out that this file was actually the ‘Head-Shaking Cat’ programme

(although I thought on first viewing that it might, thanks to the ‘disco’ lights look, be related to ‘light-

emitting’). This was the second model in Makeblock’s sequence of building instructions

File 2: 小猫探照灯.sb2 - which equates to: Xiǎo māo tànzhàodēng.sb2 and translates as:

 ‘Kitten Searchlight.sb2’

‘Searchlight’ was the clue here! This seemed to be the ‘Light-Emitting Cat’ programme and the file

had lots of scripts which were mostly activated by keyboard single keypresses; but there were two

slightly longer scripts and some comments referred to a ‘tail’ and ‘lights’:“ Press the space bar, the

kitten rotates to the right and swings the tail” and “Release the space bar, the kitten stops rotating, the

servo angle is reset, the light goes out”. This was the third model in the sequence of building

instructions.

File 3: 跳舞的小猫.sb2 - which equates to: Tiàowǔ de xiǎo māo.sb2 and translates as:

‘Dancing Kitten.sb2’

This seemed to be the ‘Dancing Cat’ programme, the names matched, although the file contained just

one short programme (also starting with an ‘mBot Program hat’ block).There was a self-defined block

script called ‘servo’ which used a repeat loop to swing the arms 5 times and a comment: “If someone is

close, and the distance is less than 20cm, then it swings the arm and turns left and right in welcome”.

This was the first model in Makeblock’s sequence of building instructions.

Now, in 2019, and with totally new mBlock 5 software I have had to totally rewrite the files and whilst

these owe much to the original concepts, they do look totally different and I have added (as you will see)

several modifications of my own.

Why Cats? …

… Is this perhaps a reference to the so-called "Chinese Lucky Cat", very

popular with Chinese merchants in many countries?

The "Chinese Lucky Cat" is a cat figurine, often with an automated slow-

moving single paw, which waves and beckons customers; these are usually

displayed at the entrance of shops, restaurants and other businesses.

This figurine is however Japanese, and it’s called the “maneki-neko” the

‘beckoning cat’, which is a common Japanese lucky charm or talisman

believed to bring good luck to the owner.

no copyright

infringement

intended

no copyright

infringement

intended

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 201

Appendix 3 - mBot Servo Project - ‘Dancing Cat’

Building / modifying the ‘Dancing Cat’ model

I have already outlined my version of modifying mBot to build the ‘Dancing Cat’ mBot model in

Appendix 2, but the enclosed instructions start by suggesting that you disconnect the cable and remove

the Ultrasonic Sensor from the front of mBot to create the “Johnny 5” look (he’s the robot in the film

“Short Circuit”).

You can do this if you want to, but I quite like leaving the sensor where it is - this makes less work to do

if you want to switch models frequently and the concept of moving the sensor to the top of a ‘neck’

(which you are about to build on top of mBot) is only to suggest that the Ultrasonic Sensor receptor

tubes are the ‘cats eyes’ above the ‘waving paws’ - and I had a much better idea for the ‘paws’!

The instructions show undoing the four screws holding the

cover and removing the protective cover from the top of mBot.

I can’t see the point of doing this either. Once again, this is

less work to do and the whole construction sequence shown

below works fine with the cover still in place protecting the

mCore board.

If you do follow my guidelines, then just add the two new

brass extender studs to the rear as described in Step 1 below

ignoring the instruction to remove the front screws.

Step 1. Replace the two rear screws holding mCore and its

cover down on to the rear two brass pillars and add two additional brass pillars

(shown in the diagram above right) to secure mCore to the two lower brass

extender studs.

Step 2. Assemble one of the 3 x 3-hole

Right Angle Brackets with one of the 9-hole

x 2 (Code I1) Slotted Plates (as shown in the

diagram on the right) using two nuts and

bolts - note which holes are used for this.

Step 3. Use two screws to attach your

assembly to the top of the two new rear brass

extender studs (as shown in the diagram on

the right).

Then attach the Me RJ25 Adapter board to

the right of the angle bracket with two more screws. (N.B. One of

these should be the screw that goes down into the lower brass

extender stud - this is shown in the diagram on the left).

The second screw through the adapter board will need a nut to secure

it on the underside of the slotted plate.

mBot and Me
a Beginner’s Guide

Page 202 - mBot and Me - a Beginner’s Guide

Step 4. Attach the second Slotted Plate vertically to the right-

angle bracket component that you have just added to your new

assembly. Use two more M4 Screws and Nuts to do this (note

from the diagram on the right which holes to use).

Step 5. Unless you have

followed my suggestion of not

moving it, re-attach the

Ultrasonic Sensor you

removed earlier to the top of

your new assembly using two

more screws and nuts (as

shown in the diagram on the

left) - the “Johnny 5” look!

Step 6. If you haven’t done it already (and you probably have by

following my notes on page 194), assemble the Servo and its Servo

Plate. Test the Servo, rotating it to a setting of 90º and then (and

only then) position the Servo Arm horizontally across the Servo unit.

Step 7. Attach one of your 20-hole (cuttable) Linkages to the Servo Arm using two 2.2 x 8 self-tapping

screws passing through two of the 2mm plastic ring spacers (see the diagram below):

Beware, it’s very easy to drop these little screws, they are so tiny for big fingers and you only have 2

(and no spares!). I didn’t find the supplied screwdriver the best fit into the cross-head of these screws,

so I used another (a jewellers screwdriver) from my collection. I do strongly recommend screwing each

screw into the third-hole-out from the centre first, so that it taps a thread into the hole in the servo arm

and thus becomes slightly easier to fit a second time when you attach the Linkage later.

Cuttable Linkages have 20 holes, therefore there is no centre hole equidistant from each end. I suppose

that you could cut off a single hole unit from one end leaving 9 holes evenly spaced either side of a

central hole (and leaving a single hexagonal washer). But cutting a length of Linkage’ isn’t really

necessary for this model, since it still works even though the arm is slightly unbalanced. I did however

decide to cut one length of Linkage into two 9-hole lengths & 2 hexagonal washers. (See page 200).

Attach the Linkage to the

Servo Arm using the

holes indicated here.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 203

Step 8. Attach your Servo / Linkage assembly to the

remaining two brass extender studs with two screws as

shown. Attach the two brass extender studs and Servo /

Linkage assembly to the vertical slotted plate on top of mBot

using two M4 Nuts as indicated in the diagram on the right. -

note which hole positions are used for this.

Step 9. It’s time to connect-up the Me modular components

to mCore. The Ultrasonic Sensor can be reconnected using

an 6P6C cable to the RJ25 Me socket where it was connected

in the original mBot configuration (port3).

Connect the Me RJ25

Adapter circuit-board to

port4 using another

6P6C RJ25 Me cable.

You cannot use any of the other mCore ports for this project since

this module requires a black coded port and the other (port3) is

needed to power the ultrasonic sensor.

You also need to connect the Servo to slot2 of the RJ25 Adapter

board - slot2 is the left-hand one of the two signal connectors when

looking at the end with these two connectors. My own ‘test rig’

variant on the theme of

the ‘Dancing Cat’ model

is shown in Appendix 2

(on page 195).

Not liking the full length

of Linkage attached to the

servo arm - the ‘see-saw’ arm of the original model concept

(shown above) I decided to cut one 20-hole length of Linkage

into two short 9-hole lengths and I then cut the remaining left

over (two-holed) piece into two octagonal washers, knowing

that they would be useful as spacers later. The ‘cuttable’

Linkage was indeed very easy to cut with a junior hack-saw

was easy to clean up too with a small fine file too.

I removed the full length of Linkage which had been mounted

directly onto the Servo Arm and replaced it using the same

screws and the same mounting holes with the small (20mm

dia.) circular acrylic plate that came with the Servo pack. The

head of the central screw holding the Servo Arm to the splined

shaft of the Servo seemed to be raised slightly, so I used a

4.5mm drill to enlarge the central hole in the acrylic plate to

clear this. The enlarged hole also allows the screw to pass

through the plate when you need to unscrew it again.

mBot and Me
a Beginner’s Guide

Page 204 - mBot and Me - a Beginner’s Guide

I then fitted one of my newly cut 9-hole short Linkage lengths

to the circular acrylic plate using two M4 x 15mm Screws, two

2mm plastic spacers and M4 Nuts, using the first and third

holes at one end.

Positioning the second cut Linkage piece on top of the first one

(with a 90º angle between the two) I used two M4 x 15mm

Screws, two 2mm plastic spacers and M4Nuts together with

my two little hexagonal offcuts as spacer pieces between the

second top short Linkage arm and the plate (but these could

have been two more of the 2mm plastic spacers instead). See

the illustration of the modified ‘arms’ on the left.

This configuration now looked so much more like waving arms

than the single see-saw Linkage that they were replacing!

I had seen

somewhere on a

website the ‘Dancing Cat’ model with two small ‘hands’ cut

out from cardboard and attached to either end of the full

length of 20 hole Linkage attached to the Servo Arm (see a

picture of this below).

I thought that I could make a

much better attempt at this

and took a suitable picture of

Emma’s cat ‘Ko-Ko’. I edited

the picture extracting a ‘head

shape’, a ‘tail shape’ and a

‘paw / leg’ shape (which I

duplicated and ‘flipped’ to

make a second paw).

I made the head about 70mm

wide, the two paws about

70mm long and the tail about

120mm long. I then printed

them on to cardboard. Emma really did like this a lot and

she had the task of cutting out the pictures and gluing them

in place. Using ‘Glue-Dots‘ as fixings the illusion was

completed by the cardboard head being attached to the top of

the vertical slotted plate above the servo; the paws were

attached to the two cut lengths of Linkage on the front servo

and the tail to a piece of twisted Linkage on the rear servo.

This really was a much more realistic ‘cat-bot’ when

compared to the original (“Johnny 5 with gloves on”)

configuration shown in the picture above.

no copyright infringement intended

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 205

Programming the ‘Dancing Cat’ model

Modifications to mBot for the ‘Dancing Cat’ model very nearly completed; it was time to programme it.

Project Concept: The ‘Cat’ sits waiting but raises its ‘tail’,

‘meows’, waves its 'paws' and dances excitedly from side-to-side in

welcome if it detects someone close to it.

Shown on the right is a Flow Chart algorithm that I created to

analyse the logical processes required to achieve the objectives of

the above concept:

A cat raising and lowering its tail is a very common gesture of

greeting. Since I had now bought two Servo packs I was able to

fully utilise the second of the signal connectors on the adaptor

board (now attached to mBot) by adding my second servo to

emulate this tail movement.

It was fairly straightforward to attach two more right-angle

brackets to the rear of the servo assembly described earlier. This

modification is shown in the illustration below:

The second Servo was attached to slot1 on the adaptor board and

the servo arm mounted vertically on its splined shaft.

To attach the ‘tail’ I took one length of 20-hole Linkage and

between the 7th & 8th holes from one end twisted it through 90º so that a cardboard tail could be added to

it with another couple of ‘Glue-Dots’. The twisted linkage was then attached to the arm of the servo

using the second circular acrylic plate. Shown on the next page is the complete script sequence written

to fulfil both the project concept and the processes outlined in the Algorithm shown above.

If

Ultrasonic Sensor

 < 600mm

Start

Play ‘Meow’

sound

Raise ‘Tail’

servo UP to (0º)

Move servo

‘Paws’

Set Motors to

twist Right (45º)

Set Motors to

twist Left (45º)

Move servo

‘Paws’

Set Motors to

Spin Around

(360º)

Play ‘Meow’

sound

Lower ‘Tail’ servo

DOWN to (0º)

Set both servos

to 90º

mBot and Me
a Beginner’s Guide

Page 206 - mBot and Me - a Beginner’s Guide

 My modified and adapted ‘Dancing Cat’ programme (on the ‘Devices’ tab):

… & on the ‘Sprites’ Tab

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 207

Appendix 4 - mBot Servo Project - ‘Head-Shaking Cat’

Building / modifying the ‘Head-Shaking Cat’ model

The ‘Head-Shaking Cat’ mBot model is much simpler

to create than the ‘Dancing Cat, but some aspects of it

are very fiddly and once again, in some places,

awkward for big (and rather old) fingers.

If you are moving on from my ‘Dancing Cat’ model

described earlier in Appendix 3 (and I am assuming

that you are) then you need to disconnect and then

unbolt the front-facing Micro Servo Plate from the two

brass studs holding it to the upright slotted-plate at the

back of mBot.

Unbolt the 3 x 3 hole angle-plate and the upright slotted plate that held the servo too. The horizontal

slotted plate at the back of mBot can be left in place, as can the RJ25 Adapter Module, leaving it

attached and ready for reconnecting the servo later.

This Micro Servo unit needs to remain in its

mounting plate (exactly as before with the 90º

position of the splined spindle set at the top).

The servo plate will be mounted horizontally,

not vertically as it was for the ‘Dancing Cat’

model.

A 3 x 3 hole angle-plate needs to be attached to

the servo arm next. I would suggest that it’s

much easier to fit the angle bracket to the top of

the servo arm using two M2 × 8mm self-tapping

screws and 2 spacers (as shown in the diagram

on the left) before the arm is fitted back onto the servo. I struggled with this quite a lot (it is MUCH

harder to fit these little screws than it looks here! Screw them both into the indicated holes in the servo

arm first to tap the thread into the plastic before fitting the washers and attaching the arm to the bracket).

Note the servo arm position shown in both

diagrams. Remove the Ultrasonic Sensor unit

from the front of mBot and disconnect its

RJ25 cable.

Attach the sensor unit to the angle bracket /

servo assembly using two M4 × 8mm Screws

and M4 Nuts (as shown in the diagram on the

right).

This is also slightly harder to do than it looks.

mBot and Me
a Beginner’s Guide

Page 208 - mBot and Me - a Beginner’s Guide

I used a small pair of snipe nosed pliers to hold the nuts whilst the screws were tightened with the

hex-drive screwdriver.

Attach the servo / sensor assembly that you have

just created to the front of mBot using two

M4×8mm screws (and nuts if necessary). This is

also much harder to do than it looks, particularly if

the chassis on your mBot doesn’t have threaded

holes on the top into which you can just insert the

screws. Holding nuts underneath whilst rotating

the screws is very tricky, so I using longer screws

fitted from underneath and held in place with the

screwdriver whilst the nuts were added on top of

the servo plate (using the slots in the plate and not

the holes indicated on the right) made this easier

too! Note the assembly diagram shown on the

right.

That’s just about all that is required to modify

mBot to make this model. Beware though, the

attachment of the Ultrasonic Sensor to the servo

arm (which I fitted LAST) is a rather flimsy affair and on my model the Sensor drooped downwards

slightly (due I guess to its weight and consequent leverage on the thin plastic servo arm). Having said

that though, it seemed to work quite well.

All you need to do now is to remake the RJ25 connections required for this model. The ports used in the

downloaded demonstration programme use port3 for the Ultrasonic Sensor and port4 for connecting the

Servo Adapter module.

Since the ‘Dancing Cat’ model used port4 for the Servo Adapter then there is nothing to change here.

The initial setup of mBot had the Me Ultrasonic Sensor connected to port 3 (as used in the ‘Dancing

Cat’ model) so I suggest keeping that connection and adapting the programme accordingly, leaving the

line follower module connected to port2 whilst port1 remains empty.

Programming the ‘Head-Shaking Cat’ (mk. I) model

Construction of the ‘Head-Shaking Cat’ model completed; it was time to think about transcribing the

‘The Kitten Looking Around’ Makeblock programme file that I had downloaded for this project. This

was the rather complex looking (mBlock 3.sb2) file described in Appendix 2 on page 198 and shown in

its entirety on the left-hand side of the next page. The mBot model worked very well using mBlock 3.

Transcribing a new version this file in mBlock 5 was not too difficult and considerably easier than I

thought it might be. It worked the first time that I tried it, operating the mBot model in exactly the same

way as if using the original script. The transcribed .mblock file is shown on the right-hand side of

following page and as you will see, they do look very similar.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 209

In the process of transcribing the mBlock 3 file into mBlock 5 format, these long sequences of nested

decisions became easier to understand which allowed me to break it down into much smaller scripts.

mBot and Me
a Beginner’s Guide

Page 210 - mBot and Me - a Beginner’s Guide

The concept of the original Makeblock (mBlock 3) programme appeared to be as follows:

The ‘cat’s head’ starts off looking forwards (the sensor in the middle position). When the programme

is activated, the cat’ moves forwards rather hesitantly for approx. one second, it then pauses to ‘look’

first right, then centre and then left by moving the sensor from side to side using the servo.

If no contact is detected by the sensor (within a given range) then the ‘cat’ continues to move

forwards as before. When the moving ‘head’ detects a contact it stores the Range in a variable) then

it makes a decision of what to do next based on pre-defined ‘a contact is close’ or ‘a contact is very

close’ parameters.

If the head turns to the left and detects something within range then the ‘cat’ backs away and turns

right. If the head turns to the right and detects something then the ‘cat’ backs away and turns the

opposite way (to the left).

To emulate this in mBlock 5 I broke up the original script that I had transcribed into nine clearly

descriptive self-defined ‘My Blocks’ scripts, named as follows: ‘Head_Feedback’, ‘Make_Decision’,

‘Move_Backwards’, ‘Move_Forwards’, ‘Move_Timer’, ‘Pause_Timer’, ‘Poll_Range’, ‘Turn_Left’ and

‘Turn_Right’.

I also created three Variables to store the readings from the Ultrasonic Sensor every time that it was

polled. These were sensibly named as: ‘Range_Centre’, ‘Range_Left’ and ‘Range_Right’.

I removed all of the blocks from the original script

that played tones through mBot’s buzzer (apart from

one which I left to signify that the programme was

activated and that mBot was ready). I also cut out

most of the blocks referring to mBot’s on-board lights

and the one block setting-up mCore’s on-board button.

Thanks to these deletions and my use of self-defined

blocks, the primary activation script (shown here on

the left) now became a very short and much clearer

and understandable sequence.

You will note that this ‘mBot start’ script is activated

by pressing the Zero (0) key on the keyboard. On

most keyboards, the numeric keypad usually has a

large Zero (0) key just to the right of the cursor keys

and on the same line as the Spacebar; so setting this

keypress to start mBot is a sensible choice.

Similarly, using a simple ‘mBot stop’ script to halt the

‘Head-Shaking Cat’ model is easy too if you make the actioning keypress the Spacebar at the bottom of

the keyboard. The spacebar is so easy to hit in a crisis should you need to stop mBot.

This script is shown on the next page along with four simple scripts which will enable you to manoeuvre

mBot manually using the four cursor keys on the keyboard.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 211

On the right, is the ‘mBot stop’ script

discussed on the previous page.

The remaining scripts here enable you

to control mBot manually via the

cursor keys on the keyboard. The ‘up

arrow’ cursor key is ‘mBot forward’

whilst the ‘down arrow’ cursor key is

‘mBot reverse’. The cursor key ‘left

arrow’ is ‘mBot left’ and the cursor

key ‘right arrow is ‘mBot right’.

The ‘Pause_Timer’ block shown in my

‘mBot start’ script (on the previous

page) is called several times in the

other block scripts in this project. This

block can be easily edited to change

the contents and is currently set in my

programme to ‘wait (0.25) seconds’.

It is easily

changeable and

is added to

briefly pause

script sequences

to give mBot

(mCore) time to process or store data.

There is also a second timer block,

‘Move_Timer’ which is called once

only. This sets the length of time that

mBot moves forwards before stopping

to poll the sensor. I have set this to

‘wait (1) second’. This block is the

same as the very last block (‘wait (0.6)

seconds’) that can be seen at the bottom of both of the original script and the transcribed version shown

on page 207.

The two remaining self-defined block scripts (‘Poll_Range’ and ‘Make_Decision’) and called in the

‘forever’ loop part of the ‘mBot start’ script, are all shown on the next page.

The self-defined ‘Poll_Range’ block checks and then stores the feedback from the sensor

at three different (‘Range_Left’, ‘Range_Centre and ‘Range_Right’) head positions.

The ‘Make_Decision’ block calls several other self-defined blocks ‘Move_Forwards’,

Move_Backwards’, ‘Turn_Left’, ‘Turn_Right’ and ‘Head_Feedback’. These last five

blocks break down the decision-making process about ‘how-and-when’ to turn into even

more understandable chunks.

mBot and Me
a Beginner’s Guide

Page 212 - mBot and Me - a Beginner’s Guide

As discussed on the previous page, here are the final

seven scripts for my ‘Head-Shaking Cat’ (mk. I) model).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 213

Programming the ‘Head-Shaking Cat’ (mk. II) model

Once I had created the ‘tidied-up’ version of the original ‘The Kitten Looking Around’ Makeblock

project file (as described in Appendix 2 on page 198 and shown on page 207) I thought that I might be

able to improve on the rather irksome ‘move, pause, look-around, move again etc.’ sequence of the

original project and I had my own ideas about how I might create a viable alternative.

When I first worked on my version of this project (initially using mBlock 3) it made considerable sense

to use the versatile ‘Events’ > ‘when (space) key pressed’ / ‘released’ hat blocks to control the

programme so that mBot could be stopped easily if it got into trouble. But the ‘when (space) key

released’ block now no longer exists! Now converted to mBlock 5 format, my programming scripts

mostly work as I expected and are fairly understandable sequences.

I did however find that the ultrasonic sensor feedback into ‘Proximity’ was occasionally not good when

mBot was heading at a shallow approach angle towards a wall or other major obstructions. Whilst this

programme did work, I found that it was not quite as reliable as the transcribed original ‘The Kitten

Looking Around’ Makeblock file (described in detail on pages 211 to 215).

My own Project Concept for the ‘Head-Shaking Cat’ (mk. II) - in mBlock 3 was:

The ‘Cat’ moves for as long as the SPACEBAR on the keyboard is depressed. It moves forwards

shaking its ‘head’ from side-to-side until it detects something close to it – the ‘cat’ then chooses to

turn randomly to either to the left or to the right and only stops if the SPACEBAR is released.

BUT now I had to rethink

this for mBlock 5. If I can

overcome the start / stop

problem then this concept is

still viable!

Shown on the right is my

original Flow Chart algorithm

which describes the logical

processes required to achieve

the objectives of the concept.

Since mBot needs to move

and swing it’s ‘head’ it needs

to be able to multi-task, so a

‘Proximity’ check needs to be

done frequently (and just

before it’s needed) to make

the decision whether ‘to turn

or not to turn’. I needed a

variable ‘Set_Proximity’ to

store feedback (in

millimetres) from the

ultrasonic distance sensor.

Start

If Proximity <

Avoidance Distance

Check ultrasound

distance reading

Make a choice to turn

left or right

Set ’Head’ servo to

centre (90º)

Move forwards at set

Speed

Swing ‘Head’ to 50º

(right) & 130º (left)

Check ultrasound

distance reading

Turn left or right

according to the

choice made earlier

mBot and Me
a Beginner’s Guide

Page 214 - mBot and Me - a Beginner’s Guide

I also decided that I needed a self-defined block function ‘Set_Turn’ which would use a random number

(0 or 1) and turn this numeric decision into understandable text, “LEFT” or “RIGHT”, and then store

the textual direction to turn in a variable called ‘Random_Choice’.

I also needed a second block function ‘Make_Turn’ to make the decision when to turn, and which way to

turn, using the following piece of logic:

If ‘Proximity’ is less than ‘Avoid_Distance’ and ‘Random_Choice’ contains “Left” then turn LEFT

else

If ‘Proximity’ is less than ‘Avoid_Distance’ and ‘Random_Choice’ contains “Right” then turn RIGHT

To start programming this model you first need to make three descriptively named Variables

‘Avoid_Distance’, ‘Proximity’ and ‘Random_Choice’. The use of these names will help to make your

scripts clearly understandable. You also need to make four self-defined ‘My Blocks’ - ‘Make_Turn’,

Move_Sensor’, ‘Set_Proximity’ and ‘Set_Turn’. Not only will they break the programming concept into

small, easily understood chunks, but these names will also help to make the whole programming

sequence clear.

Eventually I decided that the best way to start and stop the ‘Head-Shaking Cat’ was by using two

separate keypresses. Not as good as holding and then releasing a single key, but as a workaround this

solved the loss of the ‘when space key released’ hat block.

On the right is the ‘mBot start’ script I created to

activate the ‘Head-Shaking Cat’.

This is initiated by pressing the Zero (0) key on the

keyboard and starts by repositioning the ‘head’ (the

Ultrasonic Sensor) centrally at 90˚.

For most keyboards, the numeric keypad usually has a

‘Zero’ (0) key at the bottom of the keyboard just to the

right of the cursor keys and on the same line as the

‘Spacebar’, so this is also a good choice to start mBot.

This sequence calls the ‘Set_Proximity’ block script to

take feedback (in millimetres) from the ultrasonic

distance sensor, generating a value in a variable called

‘Proximity’. The ‘Set_Turn’ block script called next

generates a random number to put a textual value

‘LEFT’ or ‘RIGHT’ into another variable called

‘Random_Choice’.

The ‘Make_Turn’ block script (shown on the next page)

uses the ‘if … then … else’ decision described at the top

of this page. It is also much easier to understand since it

uses the text values ‘LEFT’ or ‘RIGHT’ as decision choices. It is nested inside the ‘forever’ loop

(shown above) which also moves the ‘cat’ forwards and moves its ‘head’ from side to side.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 215

I added the same ‘mBot stop’ script (activated by the spacebar) and the four manual control scripts

(using the cursor keys on a keyboard) that I had created for my ‘Head-Shaking Cat’ (mk. I) project (see

page 209). The ‘up arrow’ cursor key is ‘mBot forward’ whilst the ‘down arrow’ cursor key is ‘mBot

reverse’, the cursor key ‘left arrow’ is ‘mBot left’ and the cursor key ‘right arrow is ‘mBot right’.

Shown below are the four self-defined function blocks called by the main ‘when (0) key pressed’ hat

block script (described and shown on the previous page).

I found that if my mBot ‘cat’ was trapped in a corner or heading at a shallow approach angle towards a

wall or other major obstruction then I needed to quickly hit the ‘Spacebar’ to active my ‘mBot stop’

script which stops and resets everything!

I was then able to turn or reverse mBot out into open space once more by using one or more of the four

cursor key manual control scripts.

mBot and Me
a Beginner’s Guide

Page 216 - mBot and Me - a Beginner’s Guide

Whilst this programme worked, I found that it was not as good as the original Makeblock project file

‘The Kitten Looking Around’ which had the hesitant stop-and look-approach (see pages 206 to 210).

You can see from the picture on the

right that for both the (mk. I) and the

(mk. II) models I modified mBot’s

‘eyes’ (the ultrasonic sensor based

moving ‘head’) by adding a cat mask

over it.

Emma’s cat ‘Ko-Ko’ once again

provided the mask and Emma, whilst

she did not think that this project was

as good as ‘The Dancing Cat’, loved

watching the head move from side to

side.

N.B. You can also see the original

servo mount in place at the back of

the model and a marginal

modification to the second servo (tail-

raising) option too.

I didn’t actually do it, but I considered

adding the tail raising scripts from my

‘Dancing Cat’ project here, setting it to raise

the tail when moving forwards and lowering it

when mBot stopped.

This would have been fairly easy to implement,

but I didn’t want to add any more to the content

of this project unnecessarily - if you have a

second servo then you might want to try adding

the required scripts here yourself.

What I actually did do, as you can see in the

picture on the left was to modify the rear servo

mount and add an RGB-LED module to a 3x3

angle bracket mounted on the servo arm in

preparation for the next project (the ‘Light-

Emitting Cat’ model.

This modification is discussed in Appendix 5

which begins on the next page.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 217

Appendix 5 - mBot Servo Project - ‘Light-Emitting Cat’

The modifications to that need to be made to mBot to

create the ‘Light-Emitting Cat’ model (as described in

the construction notes in the Servo Pack .pdf file) are

essentially simple and rather uninspiring.

The servo is just repositioned by moving it from the front

of mBot to the rear and attaching the Me RGB-LED

module to it to represent the cat’s tail. (See the

illustration on the right).

Th instructions suggest that you need to leave the RJ25

Adapter Module attached to the plate on top (at the back)

of mBot, exactly as I have suggested for my ‘Dancing

Cat’ model and both of my ‘Head-Shaking Cat’ models.

Once again, I left the protective cover in place over the top of mCore. The 9g Micro Servo should still be

on its mounting plate - but this time it needs the servo arm to be repositioned horizontally (as it was for

the ‘Dancing Cat’ model) - not vertically as for the ‘Head-Shaking Cat’’ model.

The 3x3 angle bracket is then

mounted on to the servo arm as

shown in the diagram on the left.

Next, attach the RGB-LED

module to the 3x3 angle bracket

using two screws and nuts as

shown in the diagram on the right.

Mount this complete servo

assembly on to the rear of mBots chassis as shown in the diagrams below.

It is fairly fiddly to hold

the servo assembly in

place whilst attaching

nuts to the two locating

screws on the underside

of the chassis.

You may find this easier

to do with the 9-hole x 2

Slotted Plate and Me

RJ25 Adapter Module

removed (as shown on

the right).

I found that holding the screws with small snipe-nosed pliers helped here.

mBot and Me
a Beginner’s Guide

Page 218 - mBot and Me - a Beginner’s Guide

Reconnect all the Me components to mCore. You can use other ports for this project if you wish,

however it makes sense to leave the infrared emitting & receiving LED line-following module connected

to port2 and the ultrasonic sensor connected to port3 (exactly as they were in the original mBot

configuration). The Me RJ25 Adapter module should once again be connected to port4 and the servo

connected to slot2 of the adapter board. That leaves port1 available for connecting the RGB-LED

module (the cat’s flashing tail) using another 6P6C RJ25 Me cable.

The ‘Light-Emitting Cat’ mBlock 3 (.sb2) file downloaded from Makeblock and described in Appendix

2 on page 198, was also not very inspiring (see the complete set of original scripts for this below-left).

Having played

with this

programme in

mBlock 3, I

didn’t think it

worth it to

transcribe any of

these scripts into

mBlock 5 format.

As hinted at on

page 214, I

thought that it

would be much

better if could use

the scripts created

for both moving

mBot and turning

the head in the

‘Head-Shaking

Cat’ mk. I project

in Appendix 4.

All I needed to

do, I thought, was

to duplicate this

file and add a

couple of new

self-defined

blocks.

Particularly a

script to

randomly flash

the Me RGB-

LED module

lights.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 219

I would also need to add very similar tail-raising and tail-lowering blocks to those created in my

‘Dancing Cat’ project. So, I loaded my ‘Head-Shaking Cat’ project file into mBlock 5 and immediately

saved it as a new project file called ‘Light-Emitting Cat’; but before continuing with any programming I

had to reconfigure mBot.

If you are moving on from the ‘Head-Shaking Cat’ model described in Appendix 4 (and I assume that

you are) then there is very little to do in terms of any modifications needed to turn mBot into the new

model.

I only needed to add four new ‘My Blocks’ to the new ‘Light-Emitting Cat’ project. These self-defined

blocks were called ‘Tail_Raise’, ‘Tail_Lower’, ‘Tail_Leds_On’ and ‘Tail_Leds_Off’ and are shown in

entirety below:

I added the new block ‘Tail_Raise’ here in my ‘mBot start’

script and then added the ‘Tail_Lower’

script to the very end of the

‘Poll_Range’ script replacing the

‘Pause_Timer’ block that was at the

end of the script - no need to wait for

mCore to process data on this occasion

since that could happen whilst the servo

was being operated.

The four little ws2812 lights on the RGB-LED module are set to

show random colours each time that the ‘Tail_Leds_On’ script

is called.

My script sequence illuminates the individual ws2812 LEDs in a

clockwise direction from the top (position 4 - 12 o’clock) to the

left-hand (position 2 - 9 o’clock).

The ‘Tail_Leds_Off’ script conversely sets the three numeric permutations (for all four of the little

ws2812 LED lights colours) to zero - which means no light is emitted at all.

mBot and Me
a Beginner’s Guide

Page 220 - mBot and Me - a Beginner’s Guide

Addendum re ‘Cats’

By now, I was getting slightly fed-up with ‘Cat’ models - but I had completed the last one and had

ended up with four complete ‘Cat’ projects. After the confusion over their names (see page 198) it now

seemed to make sense (to me anyway) to totally rename them as follows:

‘Dancing Cat’ - this project I renamed as ‘Happy Cat’

‘Head-Shaking Cat mk. I’ - this project I renamed as ‘Cautious Cat’

‘Head-Shaking Cat mk. II’ - this project I renamed as ‘Inquisitive Cat’

‘Light-Emitting Cat’ - this project I renamed as ‘Colourful Cat’

Re. the Me RGB-LED module used in the ‘Light-Emitting Cat’ / ‘Colourful Cat’ project; Appendix 11

on page 233 discusses the basic principles of testing and experimenting with LEDs in detail.

Towards the end of my ‘experiments with cats!’ I suddenly thought

about simplifying the models even more. Most of the

construction modifications to mBot for all of the models

involved mounting the RJ25 Adapter board onto the 9-hole

(I1) Slotted Plate which was supported on two brass extender

studs screwed into the rear on mBot’s case.

This was certainly needed for the ‘Dancing Cat’ model - but

not for the other models; so what if this rather unsightly

assembly was removed altogether and the RJ25 Adaptor

mounted on another ‘Lego’ block that could be positioned

anywhere on the studs at the front end of the transparent case

covering the mCore board.

Another trip to Emma’s

toybox was needed! The resultant

mount (exactly the same as the one described in Appendix 1 on

page 184) is shown above-right.

This block has proved to be so versatile, and you can see in

the image above that I also added a 9-hole angle-bracket to the

assembly to allow a variety of other mounting options. I used

two M4 x 35 Screws and M4

wingnuts to attach the adapter

board and angle-bracket to

the Lego block assembly.

On the left is another

variation, this time adding a

servo (for the ‘cat’s waving paws’ perhaps) to the block.

Finally, in the image on the right you can see the very simple

modification I made to mount a second servo ‘cat’s tail’ unit to

the rear of mBot using two brass extender studs. You can see here

(compared to both of the pictures on page 214) that these are indeed

much neater modifications.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 221

Makeblock Model No. 98050 - the Six-Legged Robot Pack

The mBot Six-Legged Robot pack is another add-on 3-models-in-1 pack for mBot. The MakeBlock

advertising material for this pack says that you can construct either a ‘Beetle’, a ‘Mantis’ or a ‘Crazy

Frog’ with the components in the pack and suggests that these additions make the robot more enjoyable

and benefit children's creative thinking. Information in this pack (see below) is, as usual, fairly minimal

- bought in the UK it cost me £18 plus a marginally steep £3.50 p&p (but it did arrive the next day!).

The advertising blurb also has flowery descriptions - the primary model, a ‘walking hexapod’, is

described as “a six-legged Beetle that can turn around quickly to attack an enemy” and a second model

“The Mantis quietly crawls, waving two arms and is a hunter from the darkness”. It also describes the

third model as “the little crazy Frog which dashes around so madly that nobody can stop it”.

The little manual that comes with the pack shows a sequence of graphics similar in style to the original

mBot manual; these images only show how to modify mBot to create the so-called ‘Beetle’ and

construction details of the other two models are not included. Much more importantly, and as

disconcertingly as before, there is no hint of how to programme any of the models using mBlock.

But now that I knew where to look - thanks to searching previously for the elusive Servo Pack

Instructions (see pages 196 & 197). I found the complete model making instructions and some

programming examples on the Makeblock page describing add-on packs that I had visited earlier using

the following link:

http://learn.makeblock.com/en/mbot-add-on-packs/

The programming files were once again stored as RAR files, so as before, I used 7-Zip to decompress

them. On examining these mBlock files I was delighted to see that everything was in English including

the comment callouts attached to some of the blocks in the scripts - they were written in English, but (as

before) needed some thought to clarify the meaning!

The enclosing box was the usual size, shape and style for these add-on packs and on first-opening, was a

little underwhelming since it contains no new Me Modules (but I was expecting that!). This add-on pack

once again contained the useful Mini-Spanner (Wrench) - so I now have 3 of these!

In the box too there was a huge bag of assorted (and very useful fasteners) but the most exciting and

useful contents were undoubtedly the 12 shiny anodised blue beams and plates which matched my own

mBot. I now had at my disposal enough constructional bits to experiment with my own models, so

buying this add-on pack is certainly worth it for the contents alone and not particularly for building the

models specified.

In detail, the beams and plates contained in the pack are as follows:

Two 11-hole, 108mm 0412 Beams (see the next page for the blue/red coding here).

There are two 10-hole, 92mm 0412 Beams; six 9-hole, 76mm 0412 Beams and two 7-hole, 60mm 0412

Beams. There are also two seven-hole 45° Plates - you may have gained one of these already, if like me,

you have bought (or will buy) the ‘Light & Sound’ Add-On Pack.

Appendix 6 - mBot ‘add-on’ component - Robot Pack

http://learn.makeblock.com/en/mbot-add-on-packs/

mBot and Me
a Beginner’s Guide

Page 222 - mBot and Me - a Beginner’s Guide

An example of Makeblock’s description method:

Beam 0412-108 …

 … refers to a beam’s cross-sectional dimension = 4mm x 12mm

 … and its length = 108mm

Every component in the ‘Six-Legged Robot’ add-on pack is shown laid out in the picture above.

Below is a list of the many fasteners you get in the pack. Do note that once again there are several more

of these than actually specified by Makeblock!

10 × M4 x 8 Screws

20 × M4 x 14 Screws

10 × M4 x 22 Screws

4 × M4 x 30 Screws

4 × M4 x 35 Screws

10 × M4 Nuts

20 × M4 Nylock Nuts

20 × 3mm x 7mm dia. Plastic Spacers

12 × 10mm x 7mm dia. Plastic Spacers

24 x Plastic Peg Rivets (4mm dia. x 15)

N.B. The Plastic Peg Rivets together with 3mm thick spacer washers can be used in lieu of screws and

nuts as movement pivots to speed up model building & experimentation with your own projects (but be

advised that for model reliability, using screws with lock nuts is a much better option).

In truth I was looking forward to this add-on pack very much. Especially gaining the Beams to use in

my own creations. I thought that ‘walking’ robot models might be good value too and entertaining

though they were, they were also rather boring after a few goes with the IR remote control. Sadly, there

is not really any scope for mBlock Scratch programming with these models other than Emma’s wishful

idea for using the sound sensor to get the ‘Frog’ to jump on command - something we decided that was

just not worth it; so (and at variance with the advertising blurb) there was very little here to inspire

Emma into any really creative thinking.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 223

Building / modifying the ‘Six-Legged Beetle’ model

The ‘Six-Legged Beetle’ mBot variant is quite

a complex (but not too difficult) construction;

and once again, some aspects of the model are

fiddly and a little awkward for big fingers.

The principle of this model (a ‘walking

hexapod’) relies on inserting Screws into the

main drive wheels of mBot to serve as ‘cranks’

to operate a set of levers. Each ‘crank-pin’ is

attached off-centre to each of the wheels and

this acts like a cam producing piston-like linear

motion as each wheel rotates - which then

drives a linkage of several other levers in a

series of crude step-like movements. This is the opposite of your legs pushing on the pedal cranks of a

bike to generate rotary motion!

If you are starting with a completely built mBot then you will

need to disassemble the front wheel and Me Line-follower

Sensor assembly. Store the front wheel unit somewhere safe

for rebuilding mBot later. Remove the two wheels and remove

their tyres - store the tyres somewhere safe too (& do not lose

the two little self-tapping screws).

Next, re-fit the Line-Follower Sensor 16mm below the

underside on mBots chassis using two sets of spacers (one

10mm & two 3mm over each screw) and using two M4 x 22

Screws as shown in the diagram on the left.

Note which holes in the Line-Follower Sensor Module and on

the chassis are used for this.

Assemble the left-side leg linkage of the ‘Beetle’ first. Start

by passing one M4×22mm Screw through the centre hole of a

9-hole, 76mm 0412 Beam and then through a 7mm dia. ×

10mm long plastic spacer. Fit the screw through the bottom

hole of the circular pattern of eight holes at the front of

mBots chassis and secure it in place with an M4 Lock Nut,

allowing the Beam to move freely and smoothly (see the

diagram on the right).

N.B. If the joint is too loose, the leg might jam, and mBot will

not be able to walk easily; but if the joint is too tight, then

mBot won’t be able to walk at all!

Appendix 7 - mBot Walker Project - Robot ‘ Beetle’

mBot and Me
a Beginner’s Guide

Page 224 - mBot and Me - a Beginner’s Guide

Next, using two M4×8mm Screws and two M4 Nuts,

attach a 9-hole 45º Plate to the rear of mBots chassis as

shown in the diagram on the right. (Remember, this is

still the leg linkage assembly on the left-side of mBots

chassis).

Push an M4×22mm Screw through the end hole of a 7-

hole, 60mm 0412 Beam. Slide on to the screw a 7mm

dia. × 10mm long plastic spacer and fit this assembly

through the top hole of the 9-hole 45º Plate you added to

the rear of mBot in the last step.

See the diagram on the left.

Secure the assembly in place with an

M4 Lock Nut, allowing the Beam to

just move freely - once again not too

tight & not too loose either!

Below is shown one of the main drive

wheels. Insert (from the back of the

wheel) an M4×30mm Screw through

the hole marked red and slide over it

a 10-hole, 92mm 0412 Beam using

the fifth hole in from one end.

On top of that, place an 11-hole, 108mm 0412 Beam, passing the screw through the end hole as shown

in the sequence below. On top of those two Beams add a 9-hole, 76mm 0412 Beam using an end hole

once again. You can now use an M4 Lock Nut to secure these three Beams to the Wheel - remember,

not too tight & not too loose!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 225

Into the end hole of the 9-hole, 76mm 0412

Beam you have just added, add an M4×14mm

Screw passing through another 9-hole, 76mm

0412 Beam using the end hole once again as

shown in the diagram on the right.

Make sure that you put this new Beam behind

the original, separating them with one 7mm dia.

× 3mm thick Plastic Spacer. Secure this new

Beam in place with an M4 Lock Nut, allowing

once again the Beam to move smoothly and

freely - not too loose and not too tight.

Now it’s time to replace the left-side drive wheel

back on to its axle using one of the two M2.2 x

9mm Self-Tapping Screws (that you put aside

when you removed the wheels earlier) to secure it firmly on to the shaped axle sticking out of the motor

and through mBots chassis.

Your wheel assembly and the leg linkages that you have created so far for the left-hand side of mBot

should look like the diagram below:

Do remember for all of your Linkage joints - make them not too tight & not too loose!

M2.2 x 9mm

Self-Tapping Screw

mBot and Me
a Beginner’s Guide

Page 226 - mBot and Me - a Beginner’s Guide

Use an M4×35mm Screw passing through the fifth

hole in the rear leg of the ‘Beetle’ (as shown in the

diagram on the right) using two 7mm dia.×10mm

long Plastic Spacers to separate the two Beams.

Pass the Screw through the fourth hole up in the 9-

hole 45º Plate you attached to the rear of mBots

chassis earlier and secure it in place with an M4

Lock Nut, checking that both Beams move

smoothly and freely; once again, not too loose and

not too tight.

It’s finally time to join-together the linkages for

the left-side of the ‘Beetle’.

There are just two bits to link together.

First, you need to go back to the 7-hole, 60mm

0412 Beam that you attached with a plastic spacer

to the top hole of the 9-hole 45º Plate that you

added to the rear of mBot earlier (you left this

hanging freely whilst you dealt with the wheel

assembly). See the diagram on the left.

You need to attach the last hole of the free-end of

this Beam (the free-end where you can see 5

holes) to the end hole of the 10-hole, 92mm 0412

Beam that you added first to the wheel, using an

M4×14mm Screw passing through a 7mm dia. x

3mm thick Plastic Spacer and secured in the usual way with an M4 Lock-Nut.

Finally, you need to connect the very first Beam

that you attached to the front of mBots chassis

(which has also been hanging free since the start of

construction) to the end hole in the free-end of the

long 11-hole, 108mm 0412 Beam.

Use an M4×22mm Screw passing through a 7mm

dia. x 3mm thick Plastic Spacer between the two

Beams to make this connection and secure it in the

usual way with an M4 Lock-Nut as shown in the

diagram on the right.

The left-side linkages that comprise one half of the

‘Beetle’s’ legs are now complete.

7mm dia. x 3mm

thick Plastic Spacer

7mm dia. x 3mm

thick Plastic Spacer

TWO 7mm dia.

x 10mm long

Plastic Spacers

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 227

It is not too difficult a task to repeat a mirror-image construction of the left-side linkage to create the

linkage for the right-side legs of the ‘Beetle’ - but do note the comment about the ‘crank’ Screw position

below. You should find this second side to be a much quicker assembly time. In reality, I mirrored the

construction as I added each component - first the left-side component and then the maching right-side

one.

N.B. Once I had made up the wheel for the left-hand side of the ‘Beetle’ I copied its construction to

match the position of the three linkage Beams to be added to the right-side wheel but making sure that

the Screw providing the ‘crank’ was in a mirror image position (i.e. it was on the left side of the

central axle hole not on the right of centre like the red dot in the diagram illustrating the left-side).

This all worked very well, but it probably took about an hour altogether to construct this model. This

has been the longest construction time for any add-on model so far - but was it worth it? Remember, it’s

important to find the balance between loose & tight with the linkages and perhaps check the joints every

time you operate it. Remember too that if the joints are too loose the legs will jam and mBot will not

walk. If the joints are conversely too tight then mBot can’t walk at all. I used the principle of screwing

them tight till they were solid and then unscrewing them for half-a-turn, which seemed to work well.

Was it worth it? Yes, I think that it was - just - if only for novelty value and, for Emma’s benefit, a

demonstration of linkages and rotary & linear motion. Sadly, there is little that can be done with the

model apart from watching it walk. Any project scripts that you have written to control mBot can be

used to control the ‘Beetle’ variant but there is no need for any new scripts to be written to control it.

You could, but I think that controlling it with the IR remote in ‘manual control mode’ is what is

intended. It seemed totally pointless for the instructions to specify modifying the line-follower sensor

position on the front of the model since the model only vaguely works in this mode until the ‘Beetle’

needs to turn, which it can’t. The avoid obstacles mode also works but once again is totally limited by

this robot model’s lack of any ability to turn.

It is truly weird in the way that it walks. The biggest limitation of this six-legged robot (and to some

extent the other versions too) is the surface on which it walks. The ‘Beetle’ has difficulty turning on

carpets and has no traction at all

on slippery tiled surfaces.

I experimented by adding wider

‘feet’ using short (20mm) lengths

of garden hosepipe pushed on to

the ends of the legs at either end

but I don’t think that I gained very

much extra traction. I couldn’t

add anything to the middle leg on

each side since this is the one

attached to the drive wheel crank

and there is no gap between the

leg and the wheel. The bottom of

the leg too rises above the rim of

the wheel when the crank is at the

top and therefore anything on the

leg gets pushed off.

mBot and Me
a Beginner’s Guide

Page 228 - mBot and Me - a Beginner’s Guide

Appendix 8 - mBot Walker Project - Robot ‘Mantis’

Building / modifying the ‘Mantis’ model

The ‘Mantis’ variant of the ‘Six-Legged

Robot’ model is by comparison, a simpler

‘walker’ than the ‘Six-Legged Beetle’ and it

is also slightly easier to construct.

This model is actually driven by its own

wheels and not by its legs. The wheels

once again have Screws inserted in them to

serve as ‘cranks’ to operate a linkage on

each side (much like the ‘Six-Legged

Beetle’ model). Each ‘crank’ acts like a

cam producing piston like linear motion as

the wheel rotates and this then moves the

front legs (which look very much as though they are walking and pulling the model along).

Starting with a completely built (fully assembled) mBot, remove the two drive wheels and put them on

one side together with the two little self-tapping screws that hold them on to the axles of each electric

motor (but leave the tyres on the wheels this time).

Start by putting an M4 × 22mm Screw through on of the wheels as

indicated in the diagram on the left to create the driving ‘crank’ of

this assembly.

Add two 7mm dia. x 3mm thick Plastic Spacers to the Screw on the

outside of the wheel and then add a single 11-hole, 108mm 0412

Beam to the assembly using the end hole in the Beam securing it in

the usual way with an M4 Lock-Nut.as shown on the left.

Attach a 10-hole, 92mm 0412 Beam to the end of the 11-hole, 108mm

0412 Beam to extend it as shown in the diagram below using two

M4 x 14mm Screws in the two end

holes in each Beam and two M4 Nuts

to secure them firmly in place.

Use another M4 × 14mm Screw (as

shown on the right) to attach a 7-

hole, 60mm 0412 Beam by an end

hole to the fourth hole in the 10-hole,

92mm 0412 Beam with an M4 Lock

Nut secured in the usual way for a

moving joint - not too loose and not

too tight.

M4 Lock Nut

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 229

Attach the left-side drive wheel with its

new linkage assembly back on to mBot,

securing it on to the motor axle using

one of the two M2.2 x 9mm Self-

Tapping Screws (that you put aside

when you removed the wheels earlier).

Using one 7mm dia. × 10mm long

Plastic Spacer and two 7mm dia. ×

3mm thick Plastic Spacers to (create a

16mm wide spacer unit) use one M4 ×

30mm Screw and an M4 Lock Nut to

attach the bottom hole of the 7-hole,

60mm 0412 Beam (which you added in

the previous assembly step) to the

bottom hole at the front of mBots

chassis - do note which hole is used for

this.

Next, add a 9-hole, 76mm 0412 Beam by its end

hole to the centre hole of the upright 7-hole,

60mm 0412 Beam using an M4 × 14mm Screw

and an M4 Lock Nut secured in the usual way to

create a moving joint. (see the diagram on the

left).

Now, attach a further 9-hole, 76mm 0412 Beam

by its end hole to the end hole of the long linkage

you made earlier (which you connected to the

wheel) using an M4 × 14mm Screw and an M4

Lock Nut secured in the usual way to create

another moving joint. (see the diagram below).

Then create another moving joint using

another M4 × 14mm Screw and an M4

Lock Nut connecting the fourth hole down

in this recently added 9-hole, 76mm 0412

Beam to the end hole in the other 9-hole,

76mm 0412 Beam which you added in the

last step above (see the diagram on the

right which clearly illustrates this).

The left-side linkage is almost complete.

The front leg just needs the addition of a

‘claw’ (a 9-hole 45º Plate) attached by a

single M4 × 14mm Screw and an M4 Lock

Nut. Why a moving joint here?

M2.2 x 9mm

Self-Tapping Screw
one 7mm dia. x 10mm long

and TWO 7mm dia. x 3mm

thick Plastic Spacers

mBot and Me
a Beginner’s Guide

Page 230 - mBot and Me - a Beginner’s Guide

This joint does not move! – but is it meant to?

With the ‘claw’ affixed as shown in the diagram

on the left, the left-side linkage is complete.

It is not too difficult a task to create a mirror image

of this linkage for the right-side of the ‘Mantis’

model. You will assemble it much quicker too.

If I were making this model again, I would build

the linkages completely in reverse order.

It would be so much easier to create both linkages

as flat units (see the picture on the right) and then

finally attach each assembled linkage to a wheel

before the wheel is put back on to its axle.

The only remaining thing to do after fitting each

wheel with the completed linkage would be to

create on each side, the primary pivot for each

linkage by attaching the bottom hole of the 7-hole, 60mm 0412 Beam (hanging loose from the linkage)

to the bottom hole at the front of mBots chassis using one M4 × 30mm Screw with the 16mm thick

combination of plastic spacers and an M4 Lock Nut.

The ‘Mantis’ ‘walks’ best if you

rotate the wheels manually

before starting so that the

‘crank’ bolt on the left-hand

wheel is at the front of the

wheel (9 o’clock position)

whilst the ‘crank’ on the right-

hand wheel is at the back (also

the 9 o’clock position).

This will ensure that the front

claws move forward alternately,

and this is much more effective!

Turning the model is not

possible, so it’s just forwards or

backwards using the IR remote;

nevertheless, it’s fun to watch -

so just enjoy it.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 231

Appendix 9 - mBot Walker Project - Robot ‘ Frog ’

Building / modifying the ‘Crazy Frog’ model

The ‘Crazy Frog’ variant of the ‘Six-Legged

Robot’ model. It is a fairly simple construction

which is quick to make and possibly the most

fun to play with; purely because it is so

amusing.

Like the ‘Mantis’ model, its limited sadly to

just forwards & backwards control using the IR

remote. Turning isn’t a possibility and it works

best, incidentally, at full-power.

Emma did think that we could add the sound

sensor to the model and write a script to turn

both motors on when she shouted “Boo!”

We’ve done that before, so she knows that this

is a possibility - true, but hardly worth the effort when the model goes as well as it does using the

forwards and backwards buttons on the IR remote.

Start by removing the wheels from mBot and then

remove the tyres from the wheels. Next, attach an 11-

hole, 108mm 0412 Beam to each of the wheels as

shown in the diagram on the left.

I found that when following Makeblock’s instructions to

do this that the heads of the Self-Tapping Screws that I

put aside when I removed the wheels would not fit

through the central hole in the 11-hole, 108mm 0412

Beams.

Even though the Self-Tapping Screws wouldn’t, the

mBot screwdriver does fit through the holes easily, so I

solved this problem by attaching each Beam with just

one M4 x 14mm Screw and an M4 Lock Nut to one of

the holes in each wheel as indicated in the diagram (but

not fully tightened).

Then I pushed each Beam off-centre to expose the hole

in the centre of each wheel and insert the M2.2 x 9mm

Self-Tapping Screws into each hole in turn and then pushed each Beam back over the central hole with

the Self-Tapping Screw safely in place and then secured each Beam in place using the second M4 x

14mm Screw and an M4 Lock Nut through the correct hole in the wheel as indicated in the diagram.

Finally, I fitted each wheel back on to the shaped axles which stick out of the motor and through mBots

chassis using the two pre-positioned Self-Tapping Screws described above.

mBot and Me
a Beginner’s Guide

Page 232 - mBot and Me - a Beginner’s Guide

Next use two M4×14mm Screws secured by two

M4 Nuts to attach a 9-hole 45º Plate to each side of

the front of mBots chassis. The assembly for the

left-hand side is shown in the diagram on the left.

When both sides match each other, then the

construction is complete and ready for testing

using the pre-set ‘manual control’ routine of button

A on the IR remote.

‘Crazy Frog’ runs with a strange gait if the two

Beams attached to the rear wheels are not in

alignment but if they both hit the ground at the

same time then the ‘Frog’ can ‘hop’. Sometimes it

‘hops’ with enough force to almost stand upright

and very occasionally back-flip and become totally

immobile until you pick it up and turn it over

again.

It’s fun to watch this, but mBot needs

modifying with a combination of a

motor-cycle sissy bar and wheelie bars

like those that extend from the back of

a drag-racing car to keep it from

flipping over backwards during sudden

acceleration.

It’s an easy modification to make if

you have some spare Makeblock bits

to hand.

I used the two 10-hole, 92mm 0412

Beams for this modification (these are

part of the ‘Six-Legged Robot’ model

add-on pack and not needed for this

model).

I used four M4×14mm Screw to attach

them to the rear of mBots chassis as

shown in the picture on the right.

You can also see that I used my own M4 wing nuts for speed in assembling / disassembling the

modification.

The ‘Crazy Frog’ model works best at top speed (Button 9 on the IR remote). I suspect that you won’t

write a control script in mBlock for this - we never did!

https://www.urbandictionary.com/define.php?term=wheelie%20bars
https://www.urbandictionary.com/define.php?term=car
https://www.urbandictionary.com/define.php?term=flipping
https://www.urbandictionary.com/define.php?term=backwards

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 233

Appendix 10 - mBot ‘add-on’ component - Light/Sound

Makeblock Model No. 98056 - Interactive Light & Sound Pack

The mBot Interactive Light & Sound pack is yet another add-on 3-models-in-1 pack for mBot. The

MakeBlock advertising blurb for this says that you can construct either a ‘Light Chasing Robot’, a

‘Scorpion Robot’ or an ‘Intelligent Voice-Activated Desk Light’.

The ‘Light-Chasing Robot’ model detects the light intensity around mBot using the two light sensors,

one mounted on each side of the model. When the light intensity on the left side is greater than that on

the right the robot will turn left; when the light intensity on the right side is greater than that on the left

side, the robot will turn right; otherwise, the robot will go straight. With minimal changes to the basic

model, this modification still allows the full use of the default IR functions built into mBots firmware.

The ‘Scorpion Robot’ model gives mBot a scorpion-like curved tail and by adding this to the rear of

mBot it alters the centre of gravity, making it easier for mBot to raise its head and do a “wheelie” when

it powers forwards.

By totally changing its building configuration, mBot can also be turned into an ‘Intelligent Desk Light’

with two operating modes. Touch-mode, where the brightness of the light can be regulated by touching

the line following sensor with your fingers, and voice-activated mode where the sound level in the area

surrounding the desk light is polled and if the volume increases significantly, the light is turned on.

The advertising material also says that each model has infinite possibilities for experiencing with mBot

the magic of light and sound. Information in this pack is, however, minimal (see below) - nevertheless

if you buy it via China, it only costs approx. £20 inc. free postage - once again an absolute bargain, and

mine arrived trouble free in seven days.

The little manual that comes with the pack (as in the servo pack) shows a sequence of graphics (once

again in a similar style to the original mBot manual) showing how to modify mBot to create all three

models. It also describes (very briefly) each of the Me Modules contained in the pack.

Thanks to previously searching for the elusive Servo Pack Instructions I knew that I could return to the

Makeblock page describing add-on packs (see pages 196 and 197). Here I found the complete model

making instructions and some programming examples using the following link:

http://learn.makeblock.com/en/mbot-add-on-packs/

As I had found earlier, the programming files were stored as RAR files, so once again I used 7-Zip to

decompress them. On examining these mBlock files, I was delighted to see that everything was in

English including the comment callouts attached to some script blocks. Written in English, but as usual

needing some work to clarify the meaning!

Once again, buying an add-on pack like this will give you a few more extra construction bits to add to

your collection. Increasing your collection will enable you to experiment with your own robot

constructions (see page 157 to see the collection that I have amassed from add-on packs).

http://learn.makeblock.com/en/mbot-add-on-packs/

mBot and Me
a Beginner’s Guide

Page 234 - mBot and Me - a Beginner’s Guide

In this add-on pack there are

several more useful and

wonderful shiny anodised blue

(matching my mBot)

components. See the

illustration on the right:

There are two 5-hole, 72mm

0808 Beams, two 5 x 2-hole,

80mm 0824 Beams and a

single seven-hole 45° Plate.

These are enough for building

the specified models, but do

not add many more bits in total

to your own kit of parts.

In terms of other fasteners,

you also get in the pack (and there are several more of these than actually specified!):

8 × M4 x 22 Screws

15 × M4 x 14 Screws

8 × M4 x 8 Screws

9 × M4 Nuts

9 × 3mm x 7mm dia. Plastic Spacers

The pack contains another little spanner (the same as the “wrench” supplied in the Servo Pack). There

are also two very useful 35cm lengths of Me cable with 6P6C RJ25 plugs at each end - a welcome

addition to your kit since the default lengths supplied with mBot are only 20cm long.

Finally, the included circuitry - The pack contains two Me Light Sensor V1 Modules - these are based

on the principle of a semiconductor’s photoelectric effect. They can be used to detect and differentiate

between the light intensity in a surrounding area or determine light variances on different coloured

surfaces. These sensors can be used to make mBot projects (such as the light chasing robot and the

dimming desk light) interact with light.

There is also one very useful Me Sound Sensor V1 Module which can be used to detect the sound

intensity in a local area by measuring volume. This is a sensor which gives mBot a “listening” capacity

by utilising a microphone and a low-power amplifier combination. This sensor can be used to make

interactive mBot projects like a voice operated switch, a voice-activated light or to get mBot dancing in

time to musical rhythms.

Finally, there is one Me RGB-LED V1.1 module (exactly the same 4-LED module as supplied in the

Servo Pack) so you now have two of these too.

On the whole, another very good value pack of bits and pieces (the above Modules alone would cost in

the region of £20 to buy as individual items).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 235

Appendix 11 – mBot & mBlock 5 – All About LEDs

The human eye has receptor cells for three colours - red, green, and blue. Our perception of colour is

rather strange in that we see combinations of frequencies as another frequency and that’s why these three

colours are used in televisions and other visual displays. Multicolour White LEDs are sometimes

referred to as RGB LEDs and most of the perceivable colours of light can be formed by mixing them.

A Light-Emitting Diode (a LED) is a semiconductor light source. RGB LEDs consist of one red, one

green and one blue LED and by independently adjusting each of the three they can produce a wide range

of colours. LEDs are energy efficient and their disposal causes few environmental concerns. LEDs also

have a long lifespan and are subject to very limited wear and tear if operated at low currents and at low

temperatures.

White light can be formed by mixing different coloured lights;

the most common method is to use Red, Green, and Blue light

(see the RGB colour model diagram on the right).

Multicolour LEDs can create light of many different

colours by mixing different amounts of three primary

colours (in a range of 0 to 255) which allows precise

and dynamic colour control. The name of the colour

model comes from the initials of the three additive

primary colours, Red, Green and Blue.

The main purpose of the RGB colour model is for the

sensing, representation and display of images in

electronic systems such as televisions and computers,

though it has also been used in conventional photography.

Before the electronic age, the RGB colour

model already had a solid theory behind it

(based on the human perception of the colours

described above). Adding red to green in equal

parts makes yellow; adding red to blue in equal

parts makes magenta; adding green to blue in

equal parts makes cyan; whilst adding equal

parts of the three primary colours together

yields white light. LEDs have the potential to

display around 16 million colour combinations.

The colour-wheel shown on the left sums up the

range of colours that can be achieved with RGB

LEDs - but remember, you can't really make

browns or black at all - you can only make

whatever colour you can get when you mix red

or blue light, or blue with green light or green

with red light!

Green

0,255, 0

White

255,255, 255

Red

255, 0, 0

Cyan

0, 255, 255

Blue

0,0, 255

Magenta

255,0, 255
Yellow

255,255, 0

no copyright infringement is intended with the use of this image

mBot and Me
a Beginner’s Guide

Page 236 - mBot and Me - a Beginner’s Guide

Programming LEDs in mBlock 5

Red, green, and blue colours can be combined (as described on the previous page) by using specific

programming blocks in mBlock 5 to produce both white and coloured light from any Makeblock LEDs.

mBots own main mCore board has two 5x5mm full-colour ws2812 RGB LEDs. Each of these LEDs has

an integrated chip that enables you to control its colour individually by adjusting its brightness value and

thereby creating any colour that you want by mixing different amounts of red, green and blue light.

Each pixel of the three primary RGB colours can achieve up to 256 levels of brightness and when these

are mixed have the potential to display 16,777,216 true colour display combinations!

The second button in mBot’s ‘Blocks’ categories list accesses the ‘Show’ blocks. Three out of the five

‘stack’ blocks in this category offer slightly different ways of ways of programming the LED lights on

the mCore board. Shown on the left is one

of those ‘stack’ blocks. This block allows

you to choose either the left LED or the

right LED or both LEDs (all) and set the individual RGB values for them.

There are two other sets of programming blocks which allow you to control LED lights, but for these

you need to load in an ‘extension’ set of blocks. If you load in the ‘Light Sound’ extension, then it gives

you three ‘stack’ blocks rather similar to those described above, but this time they are for controlling

add-on Me Modules

connected to ports on mBot.

Shown on the left is Makeblock’s Me RGB-LED v1.0

module, (a component part of both the Servo Add-On pack

and the Interactive Light & Sound pack). Makeblock

describe this as a cost-effective and easy to control ‘shiny’

module, ideal for interactive lighting projects.

This module has four of the same full-colour RGB LEDs

that are on the mCore board and the ‘stack’ block shown

above can be used to set the individual RGB values for each

LED individually or all four LEDs at once.

If you load in the ‘Makers Platform’ extension, then

this also has the same light controlling blocks as in

‘Light Sound’ extension. Additionally though, there

are three additional ‘stack’ blocks and the one shown

above can be used via an Me RJ11 adapter connected

to mBot (as used to connect servos) to control a

Makeblock 1M full-colour flexible silicon LED strip.

These comprise 30 individually programmable RGB

LEDs linked into a chain to create ‘cool’

lighting effects - as shown here on the right:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 237

Each of the ‘stack’ blocks described on the previous page requires an RGB value (in a range from 0 to

255) to be entered into each of the little windows next to ‘red’, ‘green’ or ‘blue’ in each block.

N.B. mBlock 5 blocks that set RGB values for LEDs do not accept decimals as a brightness value - only

integers are acceptable.

The LED lights targeted by your choice of block will mix red, green and blue light in the specified ratio

to achieve almost any colour combination. These red, green and blue values are in LED terms the

brightness value of each of these colours - the bigger the value, the brighter and more dazzling the

colour! If all the RGB values in the block are set to zero then the targeted LED will show no colour i.e.

it has been turned ‘Off’! - Do note too, that mixed colours seem brighter than any single colour.

It is also worth noting that when setting LED colour combinations colours can be more clearly

identified if they have lower brightness settings; and it is sensible (if you want to prevent dazzling) to

set each LED to a value below 40. This will enable clear identification of both colour and light levels.

However at times, you may want to ignore this advice and just dazzle!

To set appropriate colour and light values for Makeblock LEDs you can refer to an RGB colour table

(from the internet or perhaps from the colour palettes available in Microsoft applications). I took this a

little further and experimented with RGB colour mixes using an Excel spreadsheet.

I divided each of the standard RGB colour table values (which I had found on the internet) by 6.375

(255/40) and then rounded the result to an integer

to determine a value to set the red, green & blue

values of mBlock’s programming blocks with a

non-dazzling value (integers <= 40).

Another purpose of lowering the values by the

division factor described above is to make each

output RGB LED change slowly and smoothly.

If you use the red, green & blue values from my

tables then they should yield clearly discernible

and smoothly changing LED colours.

The first of these tables - ‘Shades of Red’ is

shown here on the right:

The four remaining tables ‘Shades of Orange &

Yellow’, ‘Shades of Green’, ‘Shades of Violet’

and ‘Shades of Blue’ are shown on the next page.

Each of these tables shows a minimal set of

eleven named colours in both RGB LED values

and on the right of each table, equivalent RGB

graphics component values.

https://web.njit.edu/~kevin/rgb.txt.html

mBot and Me
a Beginner’s Guide

Page 238 - mBot and Me - a Beginner’s Guide

Some Shades of Orange & Yellow:

Some Shades of Violet:

 Colour Name R G B R G B

 Neon Pink 40 17 31 255 110 199

 Magenta 40 0 40 255 0 255

 Violet 37 20 37 238 130 238

 Lavender 36 36 39 230 230 250

 Plum 34 25 34 221 160 221

 Dark Plum 32 7 24 204 50 153

 Orchid 29 13 33 186 85 211

 Purple 25 5 37 160 32 240

 Dark Violet 23 0 33 148 0 211

 Maroon 21 4 15 139 28 98

 Dark Purple 21 4 18 135 31 120

Some Shades of Green:

 Colour Name R G B R G B

 Lime 0 40 0 0 255 0

 Lawn Green 19 39 0 124 252 0

 Pale Green 23 39 23 152 251 152

 Turquoise 10 35 32 64 224 208

 Yellow Green 24 32 7 154 205 50

 Khaki 29 28 16 189 183 107

 Sea Green 9 28 17 60 179 113

 Olive 16 22 5 107 142 35

 Green 0 20 0 0 128 0

 Teal 0 20 20 0 128 128

 Dark Green 0 15 0 0 100 0

Some Shades of Blue:

 Colour Name R G B R G B

 Blue 0 0 40 0 0 255

 Slate Blue 20 17 40 132 112 255

 Sky Blue 0 29 40 0 191 255

 Light Blue 29 37 40 191 239 255

 Cyan 0 40 40 0 255 255

 Cornflower 15 23 37 100 149 237

 Medium Blue 0 0 32 0 0 205

 Iris Blue 0 28 32 3 180 204

 Steel Blue 10 20 28 70 130 180

 Navy Blue 0 0 20 0 0 128

 Dark Slate 7 12 12 47 79 79

 Colour Name R G B 9.5 G B

 Orange 40 19 0 255 127 0

 Salmon 40 25 19 255 160 122

 Orange 40 25 0 255 165 0

 Gold 40 33 0 255 215 0

 Bisque 40 35 30 255 228 196

 Light Yellow 40 39 32 255 250 205

 Yellow 40 40 0 255 255 0

 Old Gold 34 25 5 218 165 32

 Cool Copper 34 21 3 217 135 25

 Copper 28 18 8 184 115 51

 Bronze 21 18 13 140 120 83

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 239

I tested many of these RGB LED value colours in mBlock 5 by generating a new project file in which I

created three variables ‘R_LED’, ‘G_LED’ and ‘B_LED’. I enabled the display of these three variables

onto mBlock’s ‘Stage’, giving them slider controls (see the diagram on the right) which allowed them to

be quickly adjusted from 0 (min.) to 40

(max.). In then used these values to set

the LEDs on mBot to test the ‘look’ of

each colour.

I also created this simple one-

block script to activate both of

mBot’s on-board LED lights with the values generated by the slider activated variables described above.

From these tests I found that my RGB values (all set to be integers below 40 and theoretically reducing

the output brightness) would set the colours generated by mBot’s LEDs to seem brighter than what

might have been expected.

In my colour-mixing Excel spreadsheet file I originally created a table for greyscale values, but these

LED colours didn’t really work in practice, so I deleted that part. It’s not really a true statement to say

that LED lights can depict any colour. The fifty-five shades of Red, Orange, Yellow, Green, Violet and

Blue that I have listed all do work, but I was rather disappointed with many of the darker shades

(especially browns) not really working; even if I proportionally reduced the RGB values even more to

make them duller. This is possibly because the closer you get to the upper range of output values;

everything becomes whiter and individual colours are harder to discern.

If you set all three RGB colours to full brightness you will get something close to white light, but if you

set all three of them to minimum (zero, zero, zero) or even fairly low levels of brightness, you’ll get no

visibly discernible output from mBot’s LEDs!

If the voltage to a LED is lowered, the brightness will go down; but lower the voltage enough, it will

simply turn off. It is clear therefore that mBot isn’t capable of truly dimming a LED, because a LED

can’t be dimmed effectively. To emulate the dimming of LEDs, Arduino boards (like mCore) use Pulse

Width Modulation (PWM) and the microcontroller that they use has several built-in PWMs which can

be used to adjust the brightness of a LED via programming; switching it on-and-off so quickly that you

don’t notice the flicker.

To make a LED look like it’s set to 10% (26/255) brightness, an Arduino board (using PWM) will keep

it ON for 10% of the time and OFF for 90% of the time that the LED is activated. In your own coding

using mBlock 5, in reality you don’t have to worry about what is happening here; so just ignore PWM

and send a range of voltage values (from 0 to 255) that correspond to the brightness levels that you

require.

Footnote: Despite all of the above, personally I am not overwhelmed by the output from RGB LED

lights at all. They are OK and they do have their place in projects (and are much better too if seen in

the dark) but they are nowhere as exciting or ‘cool’ as they are made out to be!

mBot and Me
a Beginner’s Guide

Page 240 - mBot and Me - a Beginner’s Guide

I created the script shown below-right to test that LEDs could be dimmed using a script:

The setting-up of the four

variables required for this is

fairly obvious from the script

image shown on the right.

The routine starts with both

of mBot’s LEDs both

illuminated with bright

(dazzling) Red whilst Green

and Blue have no values set -

(R =255, G=0, B=0).

When the script is run the

value of the red component is

repeatedly reduced by 1 until

its value = 0. All of the RGB values in the block are now set to zero and will be showing no

illuminating colour at all - mBot’s LEDs are now ‘Off’. This sequence takes about 30 seconds (approx.

1/10th second for each step in the dimming loop).

I also created the following script to set the two LEDs on mBot and the four individual LEDs on an Me

RGB-LED module to produce random colours and repeat them forever as quickly as possible in a non-

stop display of ever-changing light patterns:

I needed something very similar to this script (merged with one of my ‘Head-Shaking Cat’ routines) to

programme the ‘Light-Emitting Cat’ (see ‘Appendix 5 on page 215).

N.B. Sadly, all that I had to go on as guidance for that project was the IMPOSSIBLE claim in the

promotional blurb for the Makeblock Servo add-on pack which described the ‘Light-Emitting Cat’ as

follows:

"A nice cat brightens up your life - The light pierces the darkness - It's brighter in the sun"

The build instructions for the model show the RGB-LED module mounted on a servo (just like the Me

Ultrasonic Sensor module was mounted for the ‘Head-Shaking Cat’); but this time mounted on the rear

of mBot - like a cat’s tail perhaps - or somewhere where the sun does shine!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 241

Appendix 12 - mBot Project - ‘Light Chasing Robot’

The ‘Light-Chasing Robot’ mBot model is a very

straightforward and simple modification of the

basic mBot configuration. The concept of this

model is that mBot can detect the light intensity

around it via two Me Light Sensor V1 Modules,

one mounted on the front on either side.

Since the feedback from each sensor can be

ascertained independently, mBot can determine

whether the light intensity on the left-hand side is

greater than that on the right-hand side. It can be

programmed to turn left towards the light source

or, when the light intensity on the right-hand side

is greater than that on the left-hand side, it

can be programmed to turn right towards the light source. Otherwise, if there is no discernible

difference in the sensor readings, then mBot will continue to move forwards in a straight line.

So that’s just about it for construction, the

fixing of the two sensors. The instructions

start by showing the fitting of the two 72mm

0808 Beams that are part of the add-on pack.

These are fitted to the front of mBot with four

M4 x 14 screws & nuts as shown in the

diagram on the right - do note which holes in

the front of mBot are used for this.

Next, the sensors are fitted on to the

front of the two Beams with four

M4 x 8 screws. These screws can

be screwed anywhere in the slot in

the edge of the Beams thanks to

Makeblock’s clever design of the

grooved slots.

Try to position the sensors

approximately in the positions

indicated in the diagram on the right

(this is with the screws in line with

the third and fourth holes in each of

the 72mm 0808 Beams).

mBot and Me
a Beginner’s Guide

Page 242 - mBot and Me - a Beginner’s Guide

Not part of this model, but …

…Since I now had two RGB-LED modules, it gave me the idea of replacing the two light-

sensors on the front of the mBot model that I had just built with these two LED modules to

create a new model variant of the ‘Light Emitting Cat’; but using the configuration of the

‘Light-Chasing Robot’ model and totally dispensing with the boring servo ‘tail’ of the

original ‘cat’ model. To do this I simply made a copy of my original ‘Light Emitting Cat’

project file (see ‘Appendix 5 on page 215) and deleted the ‘Move_Tail’ function and added

four more lines to the ‘Flash_LEDs’ function to flash the LED module on port4 together

with the LED module on port3 (as well as the two onboard LEDs). This was a much more

satisfying model that showed mBots potential for producing ‘disco’ light displays.

Now back to this model (and a marginal hiccup in the wiring!) …

… mBot’s mCore main-board has a fool-proof and sturdy RJ25 wiring system providing a simple

method of connecting all of Makeblock’s Me modules to it. These RJ25 sockets all have coloured

labels, but nowhere in mBots little construction booklet does it tell you what these colours mean, or their

significance. Once again I had to trawl the internet to find out that the RJ25 connection ports on either

side of mBot have different colour-coded combinations.

Makeblock’s concept is that any

compatible Me module must connect to a

controller-board port which has a coloured

label matching its own coloured label.

Ports 1 & 2 both have three coloured

blocks on their labels (the same pattern on

each port) whilst ports 3 & 4 on the

opposite side of mBot both have a

matching checkerboard pattern of four

different colours. All of mCore’s RJ25

ports have labels showing a combination

of yellow, blue and white, but ports 3 & 4

also show a black portion on their labels.

But nowhere is this made very clear! It is very easy to connect one of the black label light sensors

to the wrong type of port! I got this wrong the first time that I connected this sensor since black labels

are on these modules, but confusingly they do not show-up at all well on the black plastic tops of the

RJ25 ports! Sound reporter blocks also have a black label and also only report output via ports 3 or 4.

The instructions for the ‘Light-Chasing Robot’ model clearly

show port3 & port4 being used to connect the two sensors to

mCore and the mBlock 5 ‘Reporter Block’ for the light-sensor

(shown here on the right) only shows port3 & port4 as being

available in the drop-down options menu - and yet I still got it

wrong the first time - because (as is intended) I made the

model before programming it!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 243

I should have realised that Makeblock knew best, but in my ignorance, I thought that I could leave the

line-following sensor connected to port2 and the ultrasonic-sensor connected to port3 (where they have

always been connected since mBots initial set-up). To me, this made considerable sense because that

left port1 free on the left of mBot and port4 free on the right of mBot; so connecting the matching light-

sensors on each side (left-to-left & right-to right) would be logically very straightforward.

For info. - The controller-board ports are labelled as follows:

• A Yellow label indicates a ‘One-Way Digital Interface’ which allows the connection of either an Me

Ultrasonic-Sensor module, an Me RGB-LED module or an Me-Limit Switch module.

• A Blue label indicates a ‘Dual Digital Interface’ which allows the connection of either an Me Line

Finder module, an Me 7 Segment LED Display module, an Me PIR Motion Sensor module, an Me

Camera Shutter module or an Me Infrared Receiver Decoder module.

• A White label indicates an ‘I ² C port’ which allows the connection of either an Me 3-Axis

Accelerometer module or an Me Gyro-Sensor module.

• A Black label indicates a ‘Dual & One-Way Analogue Interface’ which allows the connection of either

an Me Light Sensor module, an Me Sound Sensor module, an Me Potentiometer module, an Me

Joystick module, or an Me 4 Button module.

and additionally, on other Arduino boards (but not mCore):

• A Red label indicates an output voltage of 6-12v DC, which allows the connection of either an Me

Motor Driver, an Me Servo Driver or an Me Stepper Driver.

• A Grey label indicates a ‘Hardware Serial Port’ which allows the connection of either an Me

Bluetooth BLE module, or an Me Bluetooth (Dual Mode) module.

On the next page is the marginally modified and transcribed programme which I originally downloaded

from Makeblock (as an mBlock 3 file) to operate the ‘Light-Chasing Robot’.

I removed the ‘mBot Program’ hat block and replaced it with a ‘when (up arrow) key pressed’ hat block

intending to run the programme via a Bluetooth connection rather than (as it is in the original) being

uploading into Arduino for off-line use.

I made two Variables called ‘Light_Left’ and ‘Light_Right’ to store the feedback from each of the two

Me Light Sensor V1 Modules used in the project. I also created a self-defined ‘My Block’ which I

named ‘Sensor_Feedback’. In the main script routine, the single ‘Sensor_Feedback’ block is called

three times, which by being inside a forever loop gives constant feedback into the two variables shown

on the ‘Stage’. You will also note in the programme shown overleaf that I added a simple one-block

‘mBot_Stop’ script (using the ‘when (space) key pressed’ hat block to halt the robot when necessary.

Remember to connect mBot to mBlock5 using the Bluetooth connection. To operate the model, press

the up arrow on the keyboard to start mBot - or hit the spacebar to stop mBot. Use a torch to control

mBot’s movements by letting it follow (or ‘chase’) the torch-light. When the light-intensity on the left

is greater than on the right then mBot will turn left. When the light-intensity on the right is greater than

on the left then mBot will turn right. Otherwise mBot will continue to move forwards until stopped.

http://wiki.makeblock.cc/index.php?title=Me-Motor_Driver
http://wiki.makeblock.cc/index.php?title=Me-Motor_Driver
http://wiki.makeblock.cc/index.php?title=Me-Servo_Driver
http://wiki.makeblock.cc/index.php?title=Me_Stepper_Driver
http://wiki.makeblock.cc/index.php?title=Me-Bluetooth_BLE
http://wiki.makeblock.cc/index.php?title=Me-Bluetooth_BLE
http://wiki.makeblock.cc/index.php?title=Me-Bluetooth

mBot and Me
a Beginner’s Guide

Page 244 - mBot and Me - a Beginner’s Guide

Shown below is the very simple ‘Light-Chasing Robot’ programme transcribed into mBlock 5 format

from the original mBlock 3 file downloaded from Makeblock:

N.B. You could try other power settings here, but 35% and 70% seem to work very well for this model.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 245

Appendix 13 - mBot Project - ‘ Intelligent Desk Light ’

The model shown below (& it’s so different to usual!) is what you are going to create next.

The ‘Intelligent Desk Light’ mBot modification requires a complete disassembly of mBot and a

completely new configuration to be built (see the diagrams above and the illustration below-right).

The resultant desk light has two operating modes;

above ‘Touch’ mode where the brightness of the

light can be regulated by touching the line

following sensor with your fingers and ‘Voice-

activated’ mode where the sound level in the area

surrounding the desk light is polled - if the volume

increases significantly then the light turns on.

Start by completely disassembling mBot (back to

its ‘out-of-the-box’ state) including removing the

drive motors from inside the chassis.

This is a rather disheartening task, but worth it to

widen your experiences of what might be

achievable by totally reconfiguring mBot

components (and perhaps, in time, adding to them

any of the other bits that you have gained by

buying the add-on packs).

Touch Sensor

mBot and Me
a Beginner’s Guide

Page 246 - mBot and Me - a Beginner’s Guide

Using four M4 x 22 Screws

and M4 Nuts, attach a 5-hole

72mm 0808 Beam and a 5 x

2-hole 80mm 0824 Beam (as

shown in the diagram on the

left) to the underside of the

mCore board (with its

protective plastic case still in

situ).

Note that the 0824 Beam is

mounted at the front (On-

Board Button end) of mCore.

Add a second 5 x 2-hole

80mm 0824 Beam (as shown

in the diagram on the right)

using two M4 x 14 Screws

screwed directly into the end of the vertical Beam.

Next attach to the vertical 0824 Beam the Me Line-Follower Sensor using two M4 x 14 Screws and M4

Nuts (as shown in the diagram above) - do note from the diagram the correct mounting attitude of the

module, the holes used and the direction of the RJ25 port.

Also attach to the vertical 0824 Beam, a 5-hole 72mm 0808 Beam as shown at the top of the diagram

above. Note that an M4 x 22 Screw and M4 Nut are used through the bottom hole of the 0808 Beam and

that an M4 x 14 Screw is used through the next hole which is screwed into the slot the vertical 0824

Beam (so no M4 Nut is necessary here).

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 247

The next stage is to add the Me RGB-LED Module

and the Me Sound Sensor Module to the underside of

mBots chassis as shown in the diagram on the right.

Note that the Sound Sensor goes at the rear end of

the chassis with its RJ25 port pointing outwards

whilst the Me RGB-LED Module goes at the front

‘mouth’ end of the chassis with the RJ25 port

pointing inwards.

Use four M4 x 8 screws to do this. M4 Nuts should

not be necessary since mBot has threaded holes

underneath the ‘mouth’ at the front and underneath

the ‘M’ at the rear.

Finally, to complete the model mount the chassis unit

on to the arm using two M4 x 14 Screws and M4

Nuts (as shown in the diagram on the left).

Wiring: The building instructions suggest the

following connections are made: The Me line-follower

Sensor is connected to port2, the Me RGB-LED is

connected to port3 and the Me Sound Sensor is

connected to port4.

Using the original script Mblock 3 downloaded from

Makeblock (and designed to be uploaded to Arduino)

you switch the light between its two operating modes by

pressing the on-board button on mCore.

In ‘Touch Control Mode’ (the default setting) the

brightness of the light can be regulated by touching one

of the Line-Follower’s sensors with a finger: Top sensor

(light level up) - Bottom sensor (light level down).

In ‘Sound Control Mode’, the sound in the immediate

area is sensed, and if the volume intensity increases significantly then the light will turn on for 5 seconds

(at maximum intensity).

However …

…When I started disassembling mBot, by removing the mCore board and the Line-Follower sensor,

I thought it made considerable sense to leave in place the rest of the components fitted to the

chassis ready for instant mBot reassembly. The chassis being used as a ‘shade’ for the desk light is

OK, but not really necessary if you use a bit of lateral thinking and improvisation - a shade is just a

simple hollow shape - a box!

mBot and Me
a Beginner’s Guide

Page 248 - mBot and Me - a Beginner’s Guide

So off I went to our household recycling bin to see what I could find. I had it in mind to use a margarine

tub - (not far off in size I thought from the dimensions of mBot’s chassis; lightweight & structurally

strong too). Sadly, there was none to be found, but I did find

a sturdy aluminium foil tray (200 x 120 x 40) that looked fit

for purpose. It had contained Moussaka - I think !?!

mBot by this stage was looking forlorn, brainless &

immobilised; but it mostly remained intact and ready for re-

use when required again (see the diagram on the right).

So, after much soaking and careful scrubbing of the tray I

had an alternative ‘shade’ - fairly robust and very light-

weight and with the considerable advantages of a neutral

black exterior and a shiny reflective interior.

Ideal, if I could reinforce the mounting points (see the picture

below) - and, in my opinion, more attractive than the chassis.

As you can see on the left, I fitted two RGB-LEDs

end-to-end, each one mounted on a pair of the 25mm

tall brass hexagonal pillars normally used to raise

mCore up from the chassis (you do get another four of

these as part of the Servo add-on pack).

I used both of the 9-hole slotted plates (which also

came with the Servo add-on pack) putting one on

either side of the foil tray for mounting purposes and

using four M4 x 14 Screws to assemble this - it looked

very neat, stiffening the tray bottom very effectively.

Next I attached the Me Sound sensor to a 3-hole x 3-

hole right-angle bracket (also part of the Servo add-on pack) which I fixed to the side of the tray (see the

photographs above-left and below-right):

The idea was to stiffen the wall of the tray on the inside

using the angle bracket; and as a stiffener on the outside

I made a little wooden spacer (tapered to match the

slope of the tray). I used two long M4 screws passing

through all of these and through the supporting arm to

pull the whole of this assembly tight - it worked very

well (see the photograph on the right):

At some point, I still need to trim the wooden spacer

down a bit to make it thinner and look neater (and

perhaps paint it black); but the whole thing looked quite

acceptable and when powered up I was surprised how

much reflected light came out from under the foil tray

‘shade’ too.

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 249

Shown below are two views of the complete assembly of my modified variant of the ‘Desk Light’

model.

Do note from the left-hand picture that if you have a Li-Po battery similar to the one that I specified on

page 33 it does tuck away neatly underneath the mCore board - there is also room for the two cables

from the two RGB-LED lights to pass below the model too.

I connected the two Me RGB-LEDs of my model to ports 1 and 2 on mCore (at the front of the model),

the Me Line-Follower Sensor was connected to port3 and the Me Sound Sensor was connected to port4

(at the back).

Next I modified the Makeblock script for controlling the desk-light model (see the next page) which I

had downloaded by changing all references to ‘port3’ in all of the ‘set LED’ stack blocks (there were

eight of these) to ‘port1’. I then went back to each of these eight stack blocks in turn and duplicated

each one, adding the duplicate immediately below the original and setting the duplicate block each time

to read ‘port2’ instead of ‘port1’. This was so that the script sequence could control my two Me RGB-

LEDs using ports 1 and 2. I also changed the three ‘line follower’ Reporter block references to ‘port3’

(leaving the one reference to the sound sensor remaining as being connected to ‘port4’).

The downloaded script has five Variables: ‘Red’, ‘Green’, ‘Blue’, ‘mode’ and ‘lightIntensity’. I could

not see any use for the ‘Red’, ‘Green’ & ‘Blue’ Variables anywhere in the script; so I deleted them (and

the script continued to function as it did before). The second modification that I made was rather

pedantic, but I wanted to follow the naming convention that I have used throughout the pages of this

book.

I renamed ‘mode’ to ‘Mode_Value’ and ‘lightIntensity’ to ‘Light_Intensity’. I also modified the monitor

readout for the ‘Light_Intensity’ Variable on mBlock’s ‘Stage’ by giving it a slider to control the

brightness of the light if thought necessary.

mBot and Me
a Beginner’s Guide

Page 250 - mBot and Me - a Beginner’s Guide

The original Scratch 3 script downloaded from Makeblock is

very long (see the diagram on the left) and is slightly too

long for it to be to display clearly on a single page.

It is also quite hard to follow what is happening here too,

so as well as transcribing it into mBlock 5 format I

decided to modify it by breaking it down into a short ‘set-

up’ script and several self-defined ‘My Blocks’ which are

called by the set-up script as-and-when they are needed.

The main problem with the original script and my

transcribed version of this file (which is shown on the

next page) is the use of mBot’s on-board button to switch

the light activation modes.

When the original script was

written in mBlock 3 it had (as

you can see here) the

‘mBotProgram’ hat block at the

top, signifying that this

programme was to be uploaded

into mBot’s flash memory which would have

overwritten the ‘Factory Firmware’ that normally sets the onboard

button to control mBot’s three default modes of operation.

My own transcribed script is instead headed by a ‘when (green flag)

clicked’ hat block because (as usual throughout this book) I have

being trying keep all my projects using ‘online’ programming and

avoiding any uploads into flash

memory for ‘offline’ use.

The onboard button will not work in this new script

since all it does is start mBots motors and then

ignore the rest of the script.

On the next page is the transcribed mBlock 5 version

of this project - which can be uploaded into mBot

and used ‘offline’ should you want to do this.

Whilst transcribing, I got to understand how this

project works and realising the limitations of the on-

board button method made the decision to create a

totally new project - something that I had not planned

to do in these Appendices at all!

On the next page is my solution to a totally revised

and reworked ‘Intelligent Desk Light’ project ...

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 251

… but if you still wish to use my

mBlock 5 version of the mBlock

3 original script ‘offline’ (by

uploading it into mBot’s flash

memory) then shown on the left

for this purpose is the ‘Intelligent

Desk Light’ script transcribed

into mBlock 5 format.

Creating a NEW ‘Intelligent

Desk Light’ Project

I started off by trying to

eliminating the ‘if (when onboard

button is pressed) then’ block

sequence.

To do this, I removed the forever

loop (which was needed to

constantly poll the sensors) and

experimented by replacing it with

much shorter scripts.

I made one script for each lamp

mode (Touch and Sound); each

script being triggered by a

keyboard keypress and then

using a ‘repeat until’ loop to

keep checking for input (just like

‘forever’) but with the option of

another keypress enabling the

loop to be exited. A test of this

method worked successfully

which paved the way for me to

start a new project in earnest -

but remember, all of the basic

programming for robotics

work needs to be done on the

‘Devices’ tab.

I created six Variables:

‘Light_Adjustment_Factor’,

‘Light_Duration_Factor’,

‘Light_Intensity’, ‘Mode_Text’,

‘Mode_Value’, and

‘Sensor_Value’ (see more about

each of these on the next page).

mBot and Me
a Beginner’s Guide

Page 252 - mBot and Me - a Beginner’s Guide

The ‘Light_Adjustment_Factor’ that I created needs to have a value set at project start-up to provide the

step value that the ‘Touch’ light needs to increase or decrease brightness. I intend to set this to a step-

unit of 5; but it is very easy to alter this in a ‘set (variable) to’ block.

The ‘Light_Duration_Factor’ that I created also needs to have a value set at project start-up to provide

the period of time for which the ‘Sound’ light would remain on. I intended to set this to a very short test

value of 2 seconds - but it is very easy to alter this in a ‘set (variable) to’ block too.

The ‘Light_Intensity’ variable was renamed from the ‘lightIntensity’ variable of the original script. This

is used to contain a value (0 - 255) which is the brightness of the light. I also set its monitor readout

window on the ‘Stage’ have a slider so that I could manually adjust the brightness of the light.

The ‘Mode_Text’ variable I added to provide some text feedback to the ‘Stage’ showing the current

mode of operation.

The ‘Mode_Value’ variable was renamed from the ‘mode’ variable of the original script. This was

designed to contain a value (0 or 1), to act as a switch to change the light operating modes. I intended to

use this again (after my a ‘repeat until’ loop experiments) to switch scripts, but this time using (1 or 2).

I created the Variable ‘Sensor_Value’ to receive feedback from the ‘line follower’ Reporter block

(connected to port3). This sensor returns a value of 0, 1, 2, or 3 representing four different levels of

reflected light and a ’Stage’ display of this variable will be extremely useful when testing the sensor.

My initial ‘Stage’ display of these

variables is shown here on the right:

I also defined eight ‘My Blocks’:

‘Controlling_Action_is_Sound’,

‘Controlling_Action_is_Touch’,

‘LEDs_Off’, ‘LEDs_Set’,

‘Light_Brighter’, ‘Light_Dimmer’,

‘Light_Intensity’ and

‘Light_Soft_Colour_Mix’.

Using these variable names and self-

defined blocks I broke my originally

transcribed script down into small

understandable units:

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 253

Shown above (and on the previous page) are most of the scripts that make up my modified and reworked

solution to the ‘Intelligent Desk Light’ project. At the top of the next page are the remaining two scripts

which set the LEDs. At this stage of your progress through this book you should find that these scripts

are all clearly understandable.

mBot and Me
a Beginner’s Guide

Page 254 - mBot and Me - a Beginner’s Guide

How the modified ‘Intelligent Desk Light’ project works:

Clicking the ‘green flag’ activates the project and sets up the values required for several of the

Variables. You can change the step value for light intensity changes here as well as the time the light

remains on before it automatically turns off in ‘Sound’ mode.

The left and right cursor keys on the keyboard switch modes and the spacebar turns off the desk-light

and stops everything.

Makeblock’s interpretation of the ‘Intelligent Desk Light’ makes a very clever and well thought-out use

of the line-following sensor by using its two pairs of infrared LEDs to provide ‘touch control’ to adjust

the desk-light’s brightness. See Chapter 12, page 64 for more on how the line-follower sensor works.

N.B. There are a pair of small blue indicator lights on the top of the line-follower module and each

blue light is a good indicator of what each of the two LED pair components can ‘see’ and they indicate

the following:

• If both are OFF this indicates low levels of reflected light and the sensor module reports the value

’0’.

• If the bottom blue light is OFF, it shows that low reflected light (a black surface) is detected on the

bottom pair of LEDs and the module will report the value ‘1’.

• If the top blue light is OFF, it shows that low reflected light is detected on the top pair of LEDs and

the module will report the value ‘2’.

• If both blue lights are ON, they indicate that there are high levels of reflected light and the sensor

module reports the value ‘3’.

My project solution only uses the returned values of 1 and 2 to determine whether the desk-light’s

brightness should be increased or dimmed. The original project used the value 3 to make the light flash

red, green and blue but since it was easy to activate this by mistake I removed this option altogether and

replaced it with the randomly chosen values created in my self-defined ‘Light_Soft_Colour_Mix’ block

which is activated by pressing the zero (0) key on the keyboard.

Should there be a graphical ‘front-end’ for this project using ‘Sprites’ tab scripting?

I decided that one was not really needed here - but you can do this using the principles that you have

learned earlier if you want to!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 255

Appendix 14 - mBot Light Project - Robot ‘Scorpion’

The ‘Scorpion Robot’ mBot model is another straightforward modification giving mBot a distinctive

curved ‘tail’ that it resembles the tail of a scorpion. By adding the high tail (and two Me modules) to the

rear of mBot the centre of gravity is changed, supposedly making it easier for mBot to ‘rear-up’ and “do

a wheelie” when it powers forwards.

The construction of the model works better if you start by

attaching the Me Sound Sensor module to the side of a 5 x

2-hole, 80mm 0824 Beam using two M4 x 14mm screws

and M4 Nuts (as shown in the diagram on the right). Then

add an Me RGB-LED Module to the end of the Beam using

two M4 x 8mm screws (I found that I needed to use two

2mm thick Plastic Spacers under the Screw heads, since the

8mm Screws seemed a fraction too long to screw in tightly).

Note from the diagram the correct mounting attitude of each

module and the direction placement of their RJ25 ports.

Add this assembly to

a single 5-hole 72mm

0808 Beam (as shown

in the diagram on the left).

Do note that an M4 x 22mm screw passes through the second hole

down the 0808 Beam and is secured with an M4 nut. An M4 x

14mm Screw passes through the top hole in the 0808 Beam and is

screwed directly into the slot in the side of the 0824 Beam which

has the two Me Modules attached (no M4 Nut is required here).

Next, use the one 9-hole 45º Plate at your

disposal to connect your assembly to

another 72mm 0808 Beam.

Use four M4 x 14mm Screws and M4 Nuts

as shown in the diagram on the right.

Do note carefully which holes in each arm

of the 45º Plate are used for this (the end

holes, the centre hole and neither of the

holes central to each arm of the plate are not

used).

Do ensure that the Me Modules are mounted

exactly as shown in the diagram on the right.

mBot and Me
a Beginner’s Guide

Page 256 - mBot and Me - a Beginner’s Guide

Finally, attach your complete assembly to

the rear of mBot’s chassis using two M4

x14 Screws and M4 Nuts. Do note from

the diagram on the left which holes in both

your assembled ‘tail’ and in the mBot

chassis are used for this.

The Me RGB-LED needs to be connected

to port1 on mBot and the Me Sound Sensor

Module needs to be connected to port4.

This leaves the line follower connected to

port2 and the ultrasonic sensor connected

to port3 as usual. See my notes on Port

connections on pages 240 and 241.

On bikes or motorbikes 'wheelies' are the

stunt that everyone wants to achieve, but

all you’re trying to achieve here is a burst of acceleration strong enough to propel the rear wheels

forward faster than the rest of mBot, thus lifting the front caster wheel off the ground. To help with this,

you need to ensure that the normal centre of gravity of the model is moved further backward.

Makeblock’s guidelines for this model suggest that you will need to experiment with the position of

mBot’s Li-Po battery or AAA battery pack (whichever of these you are using) moving them towards the

rear and using Velcro to hold them in position.

In reality this minor adjustment made very little

difference in getting a ‘wheelie’ to work successfully

so I decided to modify the robot by adding a ‘carrier’

for the Li-Po battery at the rear of mBot (see the

photograph on the right). This was made from bits

from two Servo add-on packs. The battery is held in

place with a rubber band and positioning it this far

back did make quite a difference to the performance.

As you can see I also repositioned the ‘tail’,

connecting it to one of the 3-hole x 3-hole right angle

brackets. The ‘carrier’ is only connected to the

chassis by one bolt on either side, so pivoting it

slightly fine tunes the balance.

The model works by clapping your hands near the

sound sensor, mBot then backs-up a little and waits

for another sound signal. It then moves forward

briefly and stops and waits for further clap sounds to

reactivate it.

Emma particularly liked shouting “Boo” to activate

the Sound Sensor Module - in all of the projects

where it has been used!

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 257

Shown here on the left

is the mBlock 3 script

downloaded from

Makeblock. This has

been transcribed into

mBlock 5 format and

marginally modified.

I added a new Variable

‘Sound’ to display

sound level feedback

from the sensor on the

‘Stage’ and this

showed (in a quiet

room) readings

somewhere between

130 & 150.

Thanks to this

modification I found

that the original sound

sensor threshold setting

(550) was too high for

the script to work but

setting it to 250 worked

fine.

I altered the ‘wait’ time

(after moving

forwards) from to 0.2

secs to 0.5 secs.

Hyped by the

advertising blurb,

Emma and I both had

high hopes and great

expectations for this

apparently exciting

project. Much on a par

with the ‘Walker’ robot

models discussed

earlier, this very sadly

was rather a boring

model to both construct

and to programme.

Emma thought the project was OK - but I was very disappointed with the overall outcome!

mBot and Me
a Beginner’s Guide

Page 258 - mBot and Me - a Beginner’s Guide

Appendix 15 - mBot components - the latest bits

Several suppliers of Makeblock robotics kits and components in Europe have come and gone in the

eighteen months that I have been experimenting with mBot and writing this book. As I have mentioned

earlier, many component kits and individual component parts are hard to come by in the UK - unless

bought online with quite excessive shipping charges.

It has therefore been good to see that this year Makeblock have set up a UK storefront in the Amazon-

EU Online Store (although all products purchased there still ship from Germany with a fairly hefty £5

shipping charge applied on top of fairly premium prices) - so, costly, but easy to do and safe!

The add-on-packs already addressed in these appendices are however still easily obtainable in the UK at

a reasonable cost, but I am unlikely to buy any more even though three new add-on packs for mBot seem

to have appeared over the last year.

• I have been almost tempted by the ‘Talkative Pet’ pack, but at £43 it’s no thank-you! (although it’s

almost worth it since it contains the hard-to-get Me Audio-Player module).

• The ‘Variety Gizmos’ add-on pack at £37 would give me the rather desirable Me 7 Segment Display

module and two (v. B) Micro Switches but out of the six models described for construction three are

the same ‘Cat’ models that can be made with my existing ‘Servo’ pack.

• The ‘Perception Gizmos’ add-on pack at £46 would give me an 8×16 LED Matrix Display panel and

a Sound Sensor, both of which I already have from my earlier purchases; but I would gain a

Temperature and Humidity Sensor, a Potentiometer and a little Motor Pack - sadly, one of the five

models that is suggested is the ‘Intelligent Desk Light’ (from my existing ‘Light and Sound’ pack).

Rather than spending more on these packs, I would much rather spend £125 on Makeblock’s

‘Electronics Inventor Kit’. This does have twelve mBot (and mBlock 5) compatible plug-and-play

sensors and actuators although it is not an mBot add-on. This kit contains a very useful ‘Orion’ main

control board that I could programme instead of mBots mCore and this would, I guess, tempt me into

moving from mBlock 5 into Arduino programming.

If I chose to spend even more then I would probably upgrade from mBot altogether and go for

Makeblock’s ten-in-one ‘Ultimate Robot v.2.0 Kit’ at £280 - (& Emma gets to keep her mBot!).

Well, what a Christmas present mBot was for

Emma and her Grandad - eighteen months of

fun, entertainment and sheer hard work.

“Thanks Makeblock, the journey has been a

pleasure.”

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 259

And finally, ...

M

M

M
a
k
e
b

lo
c
k

R

o
b

o
ti

c

 D
e
v
ic

e

m
B

o
t

“Thanks to the powerful software it contains, a

computer is a creative tool - use it wisely and DO

explore the capabilities of your software to the full.

A computer is a high-quality graphical interface.

DO NOT degrade its capabilities, BE CREATIVE”.

“Do not be scared of making mistakes and NEVER just

accept what application software can auto-generate for

you - be in control and use it to the best effect to produce

high-quality output”.

“If it is to communicate to its best

advantage; then everything that you

generate on a computer should be

designed to have a WoW! Factor”.

But what about

programming

in Arduino and

Python? …

“So

… think Laterally

… be Innovative

… Experiment

… Practise

… Plan Ahead

and develop

Good Computer Habits”.

… Mañana !

Bye-Bye

mBot and Me
a Beginner’s Guide

Page 260 - mBot and Me - a Beginner’s Guide

Index

A

A.I.: 12, 50, 137

Action: 44, 45, 48, 57, 102

Activated: 19, 24, 36, 38, 39, 48, 51, 60, 63, 76, 79,

80, 104, 107, 120, 121, 128, 148, 165,

166, 191, 198, 209, 214, 232, 233, 238,

244, 253

add-on packs: 3, 8, 10, 30, 48, 61, 171, 196, 197, 220,

232, 244, 256

algorithm: 38, 41, 52, 62, 82, 159, 161, 204, 212

alphanumeric: 13, 42, 43, 70, 77, 79, 87, 90, 98, 138,

142

ambient light: 60, 65, 66, 163

analogue: 13, 31, 61, 77, 79, 98, 100, 103, 106,

107, 116, 117, 135, 161

animation: 6, 30, 70, 72, 95, 186, 189

App: 3, 5, 11, 20, 23, 29, 30, 31, 32, 80, 82,

83, 94, 152, 153, 155

Arduino: 1, 4, 5, 7, 10, 11, 12, 14, 18, 19, 25, 33,

35, 43, 102, 151, 198, 238, 242, 246

Artwork: 80, 82

axles: 158, 178, 179, 227, 230

B

Backdrop: 6, 19, 21, 35, 70, 72, 80, 82, 83, 85, 86,

87, 88, 89, 90, 94, 100, 103, 131, 132,

133, 134, 135, 139, 146, 154, 161, 198

Backup: 16, 79, 87, 104, 116, 117, 118, 122, 123,

124, 127, 129, 131, 133, 134, 135, 151,

153

Batteries: 5, 33, 34

Blockly: 30, 32, 52, 80

Blocks: 18, 20, 35, 37, 40, 41, 44, 45, 47, 52, 64,

65, 72, 102, 107, 109, 115, 120, 122,

129, 142, 143, 151, 209, 213, 218, 235,

249, 251

Blocks Area: 15, 28

Bluetooth: 2, 5, 9, 22, 25, 26, 27, 29, 30, 33, 48, 54,

61, 242

Boolean: 36, 40, 42, 46, 47, 49, 59, 63, 149

brass pillars: 172, 177, 179, 180, 199

broadcast: 13, 42, 43, 47, 50, 74, 75, 76, 77, 79,

101, 102, 103, 105, 106, 109, 112, 116,

118, 121, 123, 126, 127, 129, 131, 139,

140, 145, 146, 148, 151, 166, 169, 188

Broadcast Messages: 76, 77, 79, 81, 98

Bubble: 55, 56

Buzzer: 9, 10, 27, 29, 45, 54, 55, 209

C

cable: 1, 8, 10, 27, 156, 174, 193, 194, 248

cam: 50, 149, 222, 227

chassis: 1, 8, 33, 61, 62, 64, 158, 159, 172, 174,

177, 178, 179, 181, 182, 183, 184, 207,

216, 222, 223, 224, 225, 228, 229, 230,

231, 244, 246, 247, 255, 256

Climate Data: 50, 51, 137, 138, 140

Clone Stamp: 84, 94

Cloud: 12, 14, 15, 16, 17, 50, 87, 104, 152, 153

Code: 4, 7, 11, 12, 14, 15, 18, 19, 30, 31, 32,

35, 37, 40, 41, 51, 53, 54, 56, 65, 80, 87,

151, 152, 153

Codey Rocket: 11, 17, 20, 44, 102, 153, 154

COM: 23, 26

Command: 5, 9, 10, 13, 30, 31, 36, 39, 52, 59, 67,

77, 81, 98, 102, 172, 221

Comment: 35, 87, 151, 153, 196, 197, 198, 220,

226, 232

Connect: 19, 20, 22, 23, 24, 25, 26, 27, 69, 107,

111, 124, 201

Connection: 2, 20, 22, 23, 24, 25, 26, 27, 28, 29, 33,

48, 174, 207, 225, 241, 242

Construction: 1, 2, 3, 4, 71, 91, 92, 143, 177, 181, 192,

193, 199, 216, 219, 220, 222, 225, 226,

230, 231, 232, 240, 241, 254

control: 4, 5, 9, 13, 19, 22, 24, 27, 28, 29, 30, 31,

35, 36, 37, 39, 44, 45, 46, 47, 48, 49, 52,

53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 77,

79, 80, 81, 82, 88, 98, 102, 103, 105,

112, 125, 157, 193, 196, 197, 210, 212,

214, 221, 226, 230, 231, 234, 235, 242,

248, 249, 253

costume: 19, 53, 70, 72, 75, 82, 83, 86, 90, 95, 90,

100, 107, 112, 113, 114, 116, 117, 118,

126, 127, 129, 130, 131, 132, 133, 134,

135, 142, 144, 145, 146, 147, 164, 169

Costume Editor: 70, 82, 83, 90, 100, 107, 112, 113, 127,

131, 132, 133, 134, 135

crank: 171, 172, 173, 175, 176, 178, 179, 180,

182, 183, 222, 226, 227, 229

Create: 31

Cursor Keys: 57, 92, 152, 209, 210, 213, 214, 253

D

Data: 14, 43, 47, 50, 60, 61, 86, 101, 105, 116,

144, 145, 164

data-on-demand: 13, 42, 77, 81, 98

default: 3, 7, 9, 13, 14, 15, 16, 18, 20, 21, 23, 24,

28, 29, 30, 40, 44, 47, 48, 52, 59, 61, 62,

70, 84, 85, 86, 88, 89, 101, 102, 104,

105, 106, 128, 144, 148, 149, 150, 152,

153, 154, 155, 232, 233, 246, 249

Delete: 35, 51, 71, 104, 123, 126, 129

Design: 31, 80

Device: 13, 14, 17, 19, 20, 22, 23, 25, 26, 42, 44,

47, 50, 77, 81, 98, 153, 154

Device Library: 14, 20, 153

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 261

Device Manager: 23, 26

Devices: 12, 13, 14, 18, 19, 20, 22, 44, 47, 48, 49,

52, 54, 57, 58, 59, 62, 65, 66, 67, 69, 74,

75, 76, 79, 81, 102, 103, 106, 108, 111,

112, 116, 153, 154, 160, 165, 185, 188,

205, 250

Dialogue: 16, 23, 24, 25, 26, 143, 152

dice: 67, 68, 69, 70, 71, 72, 73, 75, 76

different tabs different script: 13, 44, 77, 81, 98

digital: 9, 13, 47, 61, 67, 77, 79, 87, 90, 98, 100,

104, 112, 117, 118, 122, 129, 131

display: 9, 10, 13, 18, 19, 31, 36, 39, 44, 47, 50,

60, 65, 66, 67, 70, 74, 76, 77, 80, 81, 82,

85, 86, 88, 90, 91, 92, 94, 98, 100, 106,

107, 113, 116, 118, 126, 127, 128, 129,

131, 133, 134, 137, 145, 146, 148, 161,

167, 169, 184, 185, 186, 187, 188, 189,

190, 234, 235, 238, 239, 249, 251, 257

Dongle: 26, 27

Driver: 3, 23, 25

duplicate: 53, 114, 126

duplicating: 53, 70, 90, 91

E

Edit: 13, 15, 16, 17, 20, 57, 73, 85, 93, 106,

112, 113, 119, 132

editor: 7, 12, 14, 18, 21, 72, 77, 82, 83, 84, 90,

93, 106, 107, 112, 113, 127, 132, 133,

134, 135, 139, 146, 154

Events: 46, 57, 74, 101, 102, 103, 116, 212

Excel: 6, 68, 71, 95, 96, 236, 238

experiment: 54, 66, 153, 160, 219, 251

Export: 13, 87

Extension: 9, 14, 44, 47, 48, 49, 50, 51, 55, 57, 58,

81, 102, 137, 140, 144, 149, 152, 153,

154, 155, 235

Extensions Centre: 47, 50, 51

F

Factory Firmware: 24

Factory Setting: 9

feedback: 3, 9, 13, 17, 18, 31, 37, 39, 46, 47, 49,

50, 51, 54, 56, 60, 61, 65, 66, 67, 70, 76,

77, 80, 81, 82, 86, 87, 88, 90, 98, 100,

106, 107, 108, 112, 116, 117, 122, 137,

140, 147, 148, 160, 161, 164, 166, 167,

184, 186, 187, 188, 189, 209, 210, 212,

213, 240, 242, 251, 257

files: 13, 15, 16, 17, 20, 21, 22, 43, 48, 52, 55,

71, 82, 83, 84, 85, 87, 89, 93, 94, 95,

131, 151, 152, 153, 154, 155, 190, 196,

197, 198, 220, 232

firmware: 7, 9, 19, 20, 23, 24, 25, 232

flash memory: 7, 10, 22, 25, 37, 54, 59, 81, 217, 241,

249, 250, 253

folder: 16, 87, 94, 152, 153, 154, 155, 197

forever: 37, 39, 59, 60, 63, 65, 66, 128, 129, 187,

191, 210, 213, 239, 242, 250

Forum: 6, 9, 25, 196

Freeform Shape: 71, 73, 91, 92, 164

frequency: 55, 56, 62, 171, 234

front wheel: 158, 159, 222

Full-Screen: 13, 18, 85, 106, 119

G

GitBook: 27, 78

GitHub: 11, 77

Global: 25, 40

gradient: 94, 95, 164

graphic: 9, 13, 19, 20, 21, 37, 42, 44, 70, 72, 73,

75, 76, 77, 79, 81, 82, 83, 84, 85, 86, 87,

88, 89, 90, 91, 93, 94, 95, 96, 98, 100,

102, 103, 104, 106, 107, 108, 109, 112,

113, 114, 116, 117, 118, 119, 127, 128,

130, 131, 135, 139, 145, 146, 147, 151,

160, 161, 163, 164, 165, 166, 167, 169,

171, 172, 184, 186, 190, 191, 192, 198,

220, 232, 236

Graphics Editor: 84, 90

Green Flag: 18, 35, 46, 53, 54, 59, 63, 66, 76, 103,

128, 139, 146, 148, 151, 172, 191, 249,

253

H

habit: 24, 35, 37, 38, 43, 76, 87, 151, 154

Harmonograph: 171

Hat: 35, 36, 38, 53, 63, 66, 190

high-quality: 6, 8, 13, 77, 79, 87, 89, 95, 98, 151

I

if / then: 40, 59, 62, 63, 114

if / then / else: 40, 59, 62, 63

Infra-Red: 59, 60

Input: 28, 35, 38, 51, 54, 55, 56, 58, 60, 61, 79,

87, 100, 146, 152, 190, 250

interface: 1, 2, 5, 6, 13, 15, 16, 17, 18, 19, 20, 22,

26, 28, 29, 30, 31, 32, 35, 61, 77, 79, 80,

82, 85, 87, 89, 98, 100, 103, 104, 107,

111, 112, 116, 117, 118, 119, 120, 127,

128, 129, 130, 131, 133, 134, 135, 151,

193

IR control: 9, 28, 29

IR remote: 3, 5, 9, 10, 28, 29, 30, 33, 53, 54, 59, 60,

63, 156, 221, 226, 229, 230, 231

Isometric: 71

K

key-presses: 79, 183

mBot and Me
a Beginner’s Guide

Page 262 - mBot and Me - a Beginner’s Guide

L

Learn: 149

LED: 3, 9, 10, 27, 28, 29, 33, 44, 45, 47, 49,

53, 54, 55, 58, 60, 61, 64, 66, 67, 80, 84,

86, 87, 89, 90, 91, 92, 93, 94, 100, 101,

104, 106, 112, 114, 118, 119, 120, 122,

123, 124, 126, 129, 130, 131, 138, 161,

163, 164, 169, 170, 184, 185, 186, 187,

188, 189, 190, 191, 193, 215, 216, 217,

218, 219, 233, 234, 235, 236, 238, 239,

241, 242, 246, 247, 248, 251, 253, 254,

255

Lego: 3, 38, 184, 219

Library: 5, 12, 13, 20, 21, 32, 42, 80, 82, 87, 88,

100, 112, 113, 117, 131, 139, 154, 169

light and shade: 94, 95

light sensor: 10, 60, 65, 66

Light Sound: 47, 49, 235, 45, 49

Light-Sensor: 53

linear motion: 171, 222, 226, 227

Line-Following: 28, 29, 61, 64

Line-Tracker: 53

Linkage: 158, 177, 181, 192, 193, 200, 201, 202,

203, 204, 224

Li-Po battery: 33, 34, 248, 255, 256

list: 13, 14, 15, 20, 38, 40, 41, 42, 43, 44, 45,

47, 49, 55, 57, 58, 62, 68, 69, 74, 101,

102, 106, 109, 112, 113, 114, 115, 116,

118, 126, 131, 134, 136, 140, 149, 153,

185, 186, 190, 221, 235

local: 40, 233

loop: 36, 37, 39, 40, 59, 60, 63, 65, 66, 128,

129, 186, 187, 188, 191, 198, 210, 213,

239, 242, 250, 251

M

M1 (motor): 48, 164, 174, 179

M2 (motor): 48, 125, 164, 174, 179, 193, 194, 206,

224, 228, 230

Machine Learning: 50, 137

Magic Eraser: 84, 94, 164

Makeblock: 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 17, 23,

24, 25, 26, 27, 29, 30, 31, 33, 35, 44, 48,

50, 55, 61, 70, 77, 80, 81, 85, 86, 125,

137, 152, 153, 157, 158, 171, 174, 184,

192, 193, 196, 198, 207, 209, 212, 215,

217, 220, 221, 230, 231, 232, 235, 236,

239,240, 241, 242, 243, 246, 248, 249,

253, 255, 257

Maker's Platform: 47, 48, 49

mBlock 3: 11, 12, 13, 15, 21, 22, 23, 24, 25, 26, 46,

48, 50, 57, 63, 81, 86, 125, 151, 152,

153, 160, 161, 188, 197, 207, 208, 209,

212, 217, 242, 243, 249, 250, 257

mBlock 5: 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32,

35, 36, 37, 38, 39, 40, 42, 43, 44, 47, 48,

51, 52, 54, 55, 57, 63, 65, 66, 70, 71, 73,

76, 77, 80, 81, 82, 85, 86, 87, 88, 89, 90,

95, 98, 103, 107, 125, 136, 137, 151,

152, 153, 154, 155, 160, 161, 163, 172,

188, 197, 198, 207, 208, 209, 212, 217,

218, 235, 236, 238, 241, 243, 249, 250,

257

mBot: 1, 11, 20, 22, 66, 146

mBot Ranger: 11, 30, 44, 80

mBot Setup Page: 21, 42, 153, 154, 155

mCore: 7, 9, 10, 25, 27, 28, 33, 45, 48, 56, 60,

172, 174, 177, 179, 184, 193, 199, 201,

209, 210, 216, 217, 218, 219, 235, 238,

241, 242, 245, 246, 247, 248

Me Series Modules: 5, 61

memory: 28, 37, 42, 50, 64

Menu: 13, 15, 85

Message: 9, 13, 42, 67, 75, 76, 77, 79, 101, 102,

103, 105, 106, 108, 109, 112, 116, 118,

121, 122, 123, 124, 126, 129, 139, 151,

164, 166, 169, 186, 188

Microsoft Office: 6, 83

millimetres: 40, 41, 63, 188, 212, 213

Mode: 13, 16, 18, 19, 22, 24, 29, 75, 76, 85,

106, 119, 135, 246

module: 5, 27, 48, 62, 64, 159, 172, 187, 193,

201, 207, 215, 216, 217, 218, 219, 233,

235, 239, 241, 242, 245, 253, 254

monitor: 13, 31, 39, 60, 69, 75, 76, 81, 85, 86, 87,

88, 90, 94, 100, 103, 104, 106, 107, 108,

112, 113, 114, 118, 119, 122, 126, 127,

129, 130, 135, 137, 163, 248, 251

motor: 8, 9, 29, 34, 45, 47, 48, 57, 58, 105, 123,

125, 155, 157, 158, 163, 164, 166, 171,

172, 173, 174, 175, 177, 178, 179, 180,

181, 182, 183, 193, 196, 224, 227, 228,

230, 231, 244, 249

My Blocks: 37, 41, 47, 64, 65, 72, 115, 120, 122,

128, 129, 142, 143, 151, 209, 213, 218,

249, 251

My Projects: 13, 15, 16, 19, 57, 85, 104, 152, 153

N

nest / nesting: 11, 40, 41, 63, 141, 189

O

Obstacle Avoidance: 28, 29

on-board: 10, 28, 29, 30, 34, 53, 54, 60, 61, 65, 66,

209, 238, 246, 249

online: 22, 37, 249

Open: 13, 15, 85

Operators: 36, 40, 41, 46, 47, 67, 72, 114, 120, 140,

189

mBot and Me
a Beginner’s Guide

 mBot and Me - a Beginner’s Guide - Page 263

P

panel: 9, 10, 15, 18, 19, 20, 21, 22, 24, 25, 31,

44, 47, 49, 51, 67, 88, 106, 107, 112,

154, 184, 186, 187, 189, 190

Pantograph: 171

parallel: 76, 196

P.C.: 2, 7, 9, 22, 23, 24, 25, 26, 27, 37, 51,

152, 153, 154

Pen: 51, 146, 147, 161, 167, 171, 172, 174,

176, 178, 179, 180, 181, 182, 183

Photoshop: 84, 89, 93, 94, 164

pixel: 88, 89, 185, 235

Plastic Rivets: 182, 221

play note: 55, 56

pointer: 84, 100, 103, 106, 107, 108, 116, 117,

120, 123, 132, 135

port: 2, 23, 24, 25, 26, 27, 33, 34, 125, 164,

201, 207, 241, 242, 245, 246

power: 3, 7, 9, 23, 26, 27, 28, 33, 34, 45, 57, 80,

102, 107, 112, 118, 120, 125, 128, 135,

137, 164, 174, 193, 201, 230, 233, 243

PowerPoint: 6

Presentation Mode: 13, 85, 86

problem: 3, 5, 6, 9, 12, 21, 23, 26, 27, 33, 34, 38,

63, 81, 106, 108, 119, 121, 137, 153,

163, 174, 182, 197, 212, 230, 249

processor: 1, 60

project: 8, 13, 14, 15, 16, 17, 21, 22, 32, 35, 42,

43, 48, 51, 52, 53, 57, 63, 67, 69, 72, 73,

74, 75, 76, 79, 82, 83, 85, 86, 87, 89, 95,

96, 98, 100, 101, 102, 103, 104, 105,

106, 107, 108, 109, 112, 114, 116, 117,

118, 122, 123, 124, 127, 128, 129, 131,

133, 134, 135, 136, 137, 138, 139, 140,

144, 145, 146, 147, 148, 149, 151, 152,

153, 155, 157, 158, 159, 160, 161, 163,

164, 167, 169, 170, 172, 174, 190, 197,

201, 204, 207, 210, 212, 214, 215, 217,

218, 219, 226, 238, 239, 241, 242, 249,

250, 251, 253, 254, 257

Python: 7, 12, 14, 18, 19, 32, 151

R

Random: 67, 68, 69, 70, 71, 72, 75, 137, 147, 190,

213, 218, 239

realism: 82, 106

real-time: 13, 37, 39, 50, 60, 65, 66, 79, 80, 98,

105, 117, 188

Recognition Window: 50, 149

reflected: 61, 64, 247, 251, 253

Repeat: 39, 40

Repeat Until: 40

Reporter: 18, 36, 39, 40, 41, 46, 47, 58, 62, 68, 69,

119, 123, 128, 131, 137, 140, 147, 189,

241, 248, 251

Reset Default Program: 28, 37

Restart: 19, 20, 23, 25

RGB: 29, 48, 61, 93, 193, 215, 216, 217, 218,

219, 233, 234, 235, 236, 238, 239, 241,

242, 246, 247, 248, 254, 255

RJ25: 8, 61, 193, 194, 195, 199, 201, 206, 207,

216, 217, 219, 233, 241, 245, 246, 254

Robot: 1, 3, 4, 7, 8, 9, 10, 17, 20, 25, 32, 35, 44,

48, 53, 57, 81, 155, 156, 158, 159, 172,

184, 192, 193, 199, 220, 221, 226, 232,

233, 242, 256

Robotics: 3, 4, 5, 6, 9, 10, 11, 12, 14, 17, 19, 20,

23, 29, 35, 44, 46, 47, 50, 57, 67, 76, 77,

79, 80, 81, 82, 88, 152, 153, 155, 157,

159, 160, 185, 250

Rock, Paper, Scissors: 43, 70, 73, 74, 137, 146

roulette: 172, 176, 180

S

Save: 6, 17, 21, 37, 41, 54, 104, 151, 153, 155

say: 67, 70

Scratch: 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19,

20, 32, 35, 36, 37, 44, 46, 47, 57, 70, 76,

77, 79, 80, 81, 82, 85, 86, 87, 88, 90, 98,

101, 103, 121, 137, 139, 140, 142, 172,

221, 249

screen-grabbed: 84, 86

Script: 13, 15, 18, 19, 20, 22, 25, 35, 36, 37, 38,

39, 41, 42, 43, 44, 46, 51, 52, 53, 54, 56,

57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69,

72, 73, 74, 75, 76, 77, 79, 82, 85, 95,

102, 105, 106, 107, 109, 112, 113, 114,

115, 116, 117, 118, 120, 121, 122, 123,

124, 125, 126, 127, 128, 129, 130, 131,

132, 133, 134, 135, 139, 140, 141, 142,

143, 144, 145, 146, 147, 148, 149, 150,

151, 152, 163, 164, 167, 169, 170, 185,

186, 187, 188, 189, 190, 191, 195, 197,

198, 204, 207, 209, 210, 213, 214, 217,

218, 230, 231, 232, 238, 239, 242, 246,

248, 249, 250, 251, 257

scroll: 9, 55, 109, 116, 186, 187, 189

self-defined block: 43, 65, 120, 122, 123, 124, 143, 144,

148, 149, 150, 151, 167, 169, 198, 209,

210, 213, 217, 218, 251

sensing: 44, 45, 46, 51, 63, 107, 108, 128, 137

Sensor: 9, 13, 18, 39, 47, 60, 61, 62, 64, 65, 66,

69, 70, 75, 77, 81, 85, 86, 87, 88, 90, 98,

100, 104, 105, 106, 107, 108, 112, 116,

117, 118, 122, 126, 135, 157, 158, 159,

160, 161, 163, 166, 167, 189, 191, 199,

206, 207, 209, 210, 212, 213, 221, 226,

230, 232, 233, 240, 241, 242, 244, 246,

247, 248, 251, 253, 256, 257

Serial: 3, 22, 23, 25, 26, 27

service bay: 155

mBot and Me
a Beginner’s Guide

Page 264 - mBot and Me - a Beginner’s Guide

Servo: 10, 47, 61, 157, 192, 193, 194, 195, 196,

197, 200, 201, 203, 204, 206, 207, 216,

220, 232, 233, 235, 239, 242, 247, 256

set-up: 21, 139, 153, 154, 164

Show: 18, 28, 44, 49, 108, 185, 186, 235

Sign: 17, 22, 76

Software: 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 22,

23, 25, 26, 27, 30, 35, 50, 80, 81, 82, 86,

153, 188, 197, 198

Sounds: 19, 155

Spirograph: 159, 171, 172

Sprite Library: 80, 82, 89, 90

Sprite: 6, 12, 13, 14, 18, 19, 20, 42, 44, 47, 48,

50, 52, 67, 69, 70, 74, 75, 76, 77, 79, 81,

87, 89, 98, 102, 103, 104, 106, 107,

117, 137, 153, 154, 155, 160, 165, 188,

254

Stack block: 28, 35, 36, 37, 40, 41, 57, 63, 64, 67, 74,

186, 187, 188, 189

Stage: 6, 13, 15, 17, 18, 19, 20, 39, 68, 77, 79,

103, 106, 187, 188, 198, 238, 242, 248,

251, 257

Support Team: 26, 81

T

Tab: 67, 84, 163

Teachable Machine: 50, 137

technical drawing: 71, 91

technique: 28, 41, 79

Text-to-Speech: 51

think: 67, 70

time clock: 128, 129

Timer: 53, 139, 209, 210, 218

Title: 16

Training Model: 50, 149

Translate: 51, 197

transparent: 83, 84, 93, 94, 95, 148, 164, 167, 219

trigonometry: 160

tutorial: 11, 16, 31, 32

U

Ultrasonic Sensor: 8, 10, 39, 40, 60, 61, 62, 100, 105, 106,

112, 117, 157, 159, 160, 161, 163, 170,

172, 184, 188, 189, 199, 200, 201, 206,

207, 209, 212, 213, 215, 217, 239, 255

underscore: 43, 151

understand: 3, 6, 8, 11, 12, 14, 19, 33, 39, 44, 52, 58,

59, 60, 64, 69, 73, 75, 77, 81, 98, 112,

117, 121, 123, 151, 197, 208, 213, 249

Update Firmware: 19, 23, 24

Updates: 7, 9, 14, 17, 24, 25

upload: 7, 13, 21, 22, 25, 37, 50, 54, 81, 82, 83,

87, 89, 95, 112, 131, 198, 242, 250

Upload Mode: 14, 18, 24, 47, 50, 77

USB: 2, 22, 23, 24, 25, 26, 27, 33, 34, 61

user: 6, 11, 12, 13, 15, 31, 35, 37, 39, 40, 41,

77, 79, 85, 154, 186, 190

User Guide: 11

user-defined: 11, 37, 39, 40, 41, 190

V

Variable: 18, 37, 39, 40, 46, 47, 57, 58, 60, 62, 68,

74, 101, 107, 129, 139, 187

variable monitors: 67, 88, 89, 129

variables: 38, 40, 42, 43, 50, 51, 58, 60, 62, 67, 68,

69, 70, 74, 76, 79, 81, 86, 101, 113, 114,

115, 128, 129, 131, 139, 140, 143, 146,

149, 172, 238, 239, 242, 251

VBA (Visual Basic): 6, 95, 96

vector drawing: 84, 93

vectors: 83, 84, 90, 132

version: 2, 5, 6, 7, 11, 15, 16, 17, 25, 27, 47, 55,

57, 69, 73, 85, 87, 95, 145, 146, 152,

160, 171, 172, 176, 177, 188, 190, 191,

199, 207, 210, 212, 249, 250

Video Sensing: 51, 137

W

wait: 60, 66, 75, 160, 163, 186, 188, 210, 218,

257

web-cam: 12, 50, 51, 137, 146, 147, 148, 149

wheels: 1, 53, 155, 157, 158, 171, 172, 173, 175,

179, 181, 182, 222, 223, 224, 227, 228,

229, 230, 231, 255

when key released: 46

when this sprite clicked: 82, 116, 120, 121, 122, 123, 134,

135, 165

While: 40

Wi-F: 5, 61

Wondergraph: 171

Word: 71, 73, 83, 84, 88, 89, 90, 91, 93, 107,

117, 131, 139, 164

Z

Zoom: 94

File Types

.gif: 84, 93

.jpg: 83, 84, 89, 90, 93, 94

.json: 87, 152

.mblock: 14, 152, 153, 207

.png: 13, 50, 71, 83, 84, 89, 93, 94, 95, 100,

112, 131, 138, 164

.rar: 197

.sb2: 152, 153, 197, 207, 217

.sb3: 14, 152

.sprite3: 13, 82, 87, 151, 152, 155, 163, 169

About the Author:

Lindsay Rooms was a teacher at the prestigious Public School, Oundle for 32 years. When he arrived at Oundle

in 1976, the school was developing its own computing expertise under the patronage of the Maths and Science

departments and Lindsay became interested in the developments in computer programming within the school

from 1977 onwards, realising how important it was to industry and engineering. He began to programme in

Basic and adapted what he learned into teaching Engineering within the School’s workshops system, generating

early C.A.D. systems from scratch.

He founded and ran the School’s dedicated C.A.D. classroom in 1991 and switched from teaching craft-based

skills to teaching Computer Studies / Information Technology in 1994. For the final fifteen years of his

teaching career he worked to establish ICT as a subject, teaching GCSE, A Level and the ECDL courses.

Lindsay’s interest, expertise and widely regarded innovative approach to ‘Creative Computing’ resulted in his

developing unique techniques to encourage pupils to explore the many possibilities offered by routine computer

software.

Deemed an expert in using the Microsoft Office suite of application packages, he was described as, “a teacher

who is very good at establishing the basics of good practice; an enthusiast who has developed unusual methods

of using application software… a true enthusiast who brought to his department specific expertise in graphic

design…”.

He retired from Oundle School in 2008, a senior master, where his role as C.O. of the CCF carried its own

Head-of-Department status. On his retirement from command in 2003, Her Majesty the Queen appointed

Lindsay as a Member of the Most Excellent Order of the British Empire in recognition of his exceptional

service as the Contingent Commander of the Combined Cadet Force at Oundle School.

The Naval Secretary’s announcement of this appointment in December 2003, stated: “Since joining the school

in 1976 you have made an outstanding contribution to the Combined Cadet Corps, first as Commanding Officer

of the Naval Section and, from 1988, as Commanding Officer of the entire Corps. Never flinching from your

duties, through hard work and dynamic and inspirational leadership you have had a tremendous and positive

impact upon the lives of many young people, gaining for Oundle School CCF a national reputation for the

quality of its service. Your tirelessness, enthusiasm and dedication have been remarkable and in the finest

traditions of the Service.”

His role in his final years at Oundle was that of School Proctor. He was a teacher for 38 years but estimates

over 40 years of continuous involvement with youth training.

He is married with one grown-up daughter and one grand-daughter and lists his hobbies as Sailing (he is a

member of the RNSA), Computing and Gardening. He was until recently churchwarden of his village church.

